Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 13, issue 3
Atmos. Chem. Phys., 13, 1637-1658, 2013
https://doi.org/10.5194/acp-13-1637-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 13, 1637-1658, 2013
https://doi.org/10.5194/acp-13-1637-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 08 Feb 2013

Research article | 08 Feb 2013

The Australian bushfires of February 2009: MIPAS observations and GEM-AQ model results

N. Glatthor1, M. Höpfner1, K. Semeniuk2, A. Lupu2, P. I. Palmer3, J. C. McConnell2, J. W. Kaminski2, T. von Clarmann1, G. P. Stiller1, B. Funke4, S. Kellmann1, A. Linden1, and A. Wiegele1 N. Glatthor et al.
  • 1Karlsruher Institut für Technologie, Institut für Meteorologie und Klimaforschung, Karlsruhe, Germany
  • 2Centre for Research in Earth and Space Science, York University, Toronto, Canada
  • 3School of GeoSciences, University of Edinburgh, Edinburgh, UK
  • 4Instituto de Astrofísica de Andalucía (CSIC), Granada, Spain

Abstract. Starting on 7 February 2009, southeast Australia was devastated by large bushfires, which burned an area of about 3000 km2 on this day alone. This event was extraordinary, because a large number of combustion products were transported into the uppermost troposphere and lower stratosphere within a few days. Various biomass burning products released by the fire were observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on the Envisat satellite. We tracked the plume using MIPAS C2H2, HCN and HCOOH single-scan measurements on a day-to-day basis. The measurements were compared with a high-resolution model run of the Global Environmental Multiscale Air Quality (GEM-AQ) model. Generally there is good agreement between the spatial distribution of measured and modelled pollutants. Both MIPAS and GEM-AQ show a fast southeastward transport of the pollutants to New Zealand within one day. During the following 3–4 days, the plume remained northeastward of New Zealand and was located at altitudes of 15 to 18 km. Thereafter its lower part was transported eastward, followed by westward transport of its upper part. On 17 February the eastern part had reached southern South America and on 20 February the central South Atlantic. On the latter day a second relic of the plume was observed moving eastward above the South Pacific. Between 20 February and the first week of March, the upper part of the plume was transported westward over Australia and the Indian Ocean towards southern Africa. First evidence for entry of the pollutants into the stratosphere was found in MIPAS data of 11 February, followed by larger amounts on 17 February and the days thereafter. From MIPAS data, C2H2/HCN and HCOOH/HCN enhancement ratios of 0.76 and 2.16 were calculated for the first days after the outbreak of the fires, which are considerably higher than the emission ratios assumed for the model run and at the upper end of values found in literature. From the temporal decrease of the enhancement ratios, mean lifetimes of 16–20 days and of 8–9 days were calculated for measured C2H2 and HCOOH. The respective lifetimes calculated from the model data are 18 and 12 days.

Please read the corrigendum first before accessing the article.
Publications Copernicus
Download
Notice on corrigendum

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Citation
Share