Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 13, issue 3 | Copyright
Atmos. Chem. Phys., 13, 1591-1606, 2013
https://doi.org/10.5194/acp-13-1591-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 08 Feb 2013

Research article | 08 Feb 2013

Application of the Statistical Oxidation Model (SOM) to Secondary Organic Aerosol formation from photooxidation of C12 alkanes

C. D. Cappa1, X. Zhang2, C. L. Loza3, J. S. Craven3, L. D. Yee2, and J. H. Seinfeld2,3 C. D. Cappa et al.
  • 1Department of Civil and Environmental Engineering, University of California, Davis, CA, 95616, USA
  • 2Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
  • 3Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA

Abstract. Laboratory chamber experiments are the main source of data on the mechanism of oxidation and the secondary organic aerosol (SOA) forming potential of volatile organic compounds. Traditional methods of representing the SOA formation potential of an organic do not fully capture the dynamic, multi-generational nature of the SOA formation process. We apply the Statistical Oxidation Model (SOM) of Cappa and Wilson (2012) to model the formation of SOA from the formation of the four C12 alkanes, dodecane, 2-methyl undecane, cyclododecane and hexylcyclohexane, under both high- and low-NOx conditions, based upon data from the Caltech chambers. In the SOM, the evolution of reaction products is defined by the number of carbon (NC) and oxygen (NO) atoms, and the model parameters are (1) the number of oxygen atoms added per reaction, (2) the decrease in volatility upon addition of an oxygen atom and (3) the probability that a given reaction leads to fragmentation of the molecules. Optimal fitting of the model to chamber data is carried out using the measured SOA mass concentration and the aerosol O:C atomic ratio. The use of the kinetic, multi-generational SOM is shown to provide insights into the SOA formation process and to offer promise for application to the extensive library of existing SOA chamber experiments that is available.

Download & links
Publications Copernicus
Download
Citation
Share