Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 13, issue 24
Atmos. Chem. Phys., 13, 12171-12186, 2013
https://doi.org/10.5194/acp-13-12171-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 13, 12171-12186, 2013
https://doi.org/10.5194/acp-13-12171-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 17 Dec 2013

Research article | 17 Dec 2013

Physics of Stratocumulus Top (POST): turbulent mixing across capping inversion

S. P. Malinowski1,2, H. Gerber3, I. Jen-La Plante1, M. K. Kopec1, W. Kumala1, K. Nurowska1, P. Y. Chuang4, D. Khelif5, and K. E. Haman1 S. P. Malinowski et al.
  • 1Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
  • 2Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
  • 3Gerber Scientific Inc., Reston, VA, USA
  • 4Earth and Planetary Sciences, University of California, Santa Cruz, CA, USA
  • 5Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA

Abstract. High spatial resolution measurements of temperature and liquid water content, accompanied by moderate-resolution measurements of humidity and turbulence, collected during the Physics of Stratocumulus Top experiment are analyzed. Two thermodynamically, meteorologically and even optically different cases are investigated. An algorithmic division of the cloud-top region into layers is proposed. Analysis of dynamic stability across these layers leads to the conclusion that the inversion capping the cloud and the cloud-top region is turbulent due to the wind shear, which is strong enough to overcome the high static stability of the inversion. The thickness of this mixing layer adapts to wind and temperature jumps such that the gradient Richardson number stays close to its critical value. Turbulent mixing governs transport across the inversion, but the consequences of this mixing depend on the thermodynamic properties of cloud top and free troposphere. The effects of buoyancy sorting of the mixed parcels in the cloud-top region are different in conditions that permit or prevent cloud-top entrainment instability. Removal of negatively buoyant air from the cloud top is observed in the first case, while buildup of the diluted cloud-top layer is observed in the second one.

Publications Copernicus
Download
Citation
Share