Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 13, issue 23
Atmos. Chem. Phys., 13, 11951-11963, 2013
https://doi.org/10.5194/acp-13-11951-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 13, 11951-11963, 2013
https://doi.org/10.5194/acp-13-11951-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 10 Dec 2013

Research article | 10 Dec 2013

Gravity wave influence on NLC: experimental results from ALOMAR, 69° N

H. Wilms1, M. Rapp1,2, P. Hoffmann3, J. Fiedler3, and G. Baumgarten3 H. Wilms et al.
  • 1Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
  • 2Meteorologisches Institut München, Ludwig-Maximilians-Universität München, Munich, Germany
  • 3Leibniz Institute of Atmospheric Physics, Schlossstr. 6, 18225 Kühlungsborn, Germany

Abstract. The influence of gravity waves on noctilucent clouds (NLC) at ALOMAR (69° N) is analysed by relating gravity wave activity to NLC occurrence from common-volume measurements. Gravity wave kinetic energies are derived from MF-radar wind data and filtered into different period ranges by wavelet transformation. From the dataset covering the years 1999–2011, a direct correlation between gravity wave kinetic energy and NLC occurrence is not found, i.e., NLC appear independently of the simultaneously measured gravity wave kinetic energy. In addition, gravity wave activity is divided into weak and strong activity as compared to a 13 yr mean. The NLC occurrence rates during strong and weak activity are calculated separately for a given wave period and compared to each other. Again, for the full dataset no dependence of NLC occurrence on relative gravity wave activity is found. However, concentrating on 12 h of NLC detections during 2008, we do find an NLC-amplification with strong long-period gravity wave occurrence. Our analysis hence confirms previous findings that in general NLC at ALOMAR are not predominantly driven by gravity waves while exceptions to this rule are at least possible.

Publications Copernicus
Download
Citation
Share