Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 13, issue 3 | Copyright

Special issue: Summertime boreal forest atmospheric chemistry and physics...

Atmos. Chem. Phys., 13, 1129-1139, 2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 01 Feb 2013

Research article | 01 Feb 2013

Peroxyacetyl nitrate (PAN) and peroxyacetic acid (PAA) measurements by iodide chemical ionisation mass spectrometry: first analysis of results in the boreal forest and implications for the measurement of PAN fluxes

G. J. Phillips1, N. Pouvesle1,*, J. Thieser1, G. Schuster1, R. Axinte1, H. Fischer1, J. Williams1, J. Lelieveld1, and J. N. Crowley1 G. J. Phillips et al.
  • 1Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128 Mainz, Germany
  • *now at: ET Energie Technologie GmBH, Eugen-Sänger-Ring 4, 85649 Brunnthal, Germany

Abstract. We describe measurements of peroxyacetyl nitrate (CH3C(O)O2NO2, PAN) and peroxyacetic acid (CH3C(O)OOH, PAA) in the Boreal forest using iodide chemical ionization mass spectrometry (ICIMS). The measurements were made during the Hyytiälä United Measurement of Photochemistry and Particles – Comprehensive Organic Particle and Environmental Chemistry (HUMPPA-COPEC-2010) measurement intensive. Mixing ratios of PAN and PAA were determined by measuring the acetate ion signal (CH3C(O)O, m/z = 59) resulting from reaction of CH3C(O)O2 (from the thermal dissociation of PAN) or CH3C(O)OOH with iodide ions using alternatively heated and ambient temperature inlet lines. During some periods of high temperature (~ 30 °C) and low NOx (< 1 ppbv), PAA mixing ratios were similar to, or exceeded those of PAN and thus contributed a significant fraction of the total acetate signal. PAA is thus a potential interference for ICIMS measurements of PAN, and especially eddy covariance flux measurements in environments where the PAA flux is likely to be a significant proportion of the (short timescale) acetate ion variability. Within the range of mixing ratios of NOx measured during HUMPPA-COPEC, the modelled ratio of PAA-to-PAN was found to be sensitive to temperature (through the thermal decomposition rate of PAN) and the HO2 mixing ratio, thus providing some constraint to estimates of photochemical activity and oxidation rates in the Boreal environment.

Download & links
Publications Copernicus
Special issue