Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 13, issue 21 | Copyright
Atmos. Chem. Phys., 13, 10787-10794, 2013
https://doi.org/10.5194/acp-13-10787-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 06 Nov 2013

Research article | 06 Nov 2013

Ozone seasonality above the tropical tropopause: reconciling the Eulerian and Lagrangian perspectives of transport processes

M. Abalos1, F. Ploeger2, P. Konopka2, W. J. Randel3, and E. Serrano1 M. Abalos et al.
  • 1Universidad Complutense de Madrid, Madrid, Spain
  • 2Institute of Energy and Climate Research: Stratosphere (IEK-7), Forschungszentrum Jülich, Jülich, Germany
  • 3National Center for Atmospheric Research, Boulder, Colorado, USA

Abstract. We aim to reconcile the recently published, apparently contrasting results regarding the relative importance of tropical upwelling versus horizontal transport for the seasonality of ozone above the tropical tropopause. Different analysis methods in the literature (Lagrangian versus Eulerian, and isentropic versus pressure vertical coordinates) yield different perspectives of ozone transport, and the results must be carefully compared in equivalent terms to avoid misinterpretation. By examining the Lagrangian calculations in the Eulerian formulation, we show here that the results are in fact consistent with each other and with a common understanding of the ozone transport processes near and above the tropical tropopause.

We further emphasize that the complementary approaches are suited for answering two different scientific questions: (1) what drives the observed seasonal cycle in ozone at a particular level above the tropical tropopause? and (2) how important is horizontal transport from mid-latitudes for ozone concentrations in the tropical lower stratosphere? Regarding the first question, the analysis of the transformed Eulerian mean (TEM) ozone budget shows that the annual cycle in tropical upwelling is the main forcing of the ozone seasonality at altitudes with large vertical gradients in the tropical lower stratosphere. To answer the second question a Lagrangian framework must be used, and the results show that a large fraction (~50%) of the ozone molecules ascending through the tropical lower stratosphere is of extra-tropical origin and has been in-mixed from mid-latitudes.

Download & links
Publications Copernicus
Download
Citation
Share