Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 12, issue 20 | Copyright
Atmos. Chem. Phys., 12, 9791-9797, 2012
https://doi.org/10.5194/acp-12-9791-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 29 Oct 2012

Research article | 29 Oct 2012

Tropical convective transport and the Walker circulation

J. S. Hosking1,*, M. R. Russo1,2, P. Braesicke1,2, and J. A. Pyle1,2 J. S. Hosking et al.
  • 1Centre for Atmospheric Science, University of Cambridge, Cambridge, UK
  • 2National Centre for Atmospheric Science, University of Cambridge, Cambridge, UK
  • *now at: British Antarctic Survey, Cambridge, UK

Abstract. We introduce a methodology to visualise rapid vertical and zonal tropical transport pathways. Using prescribed sea-surface temperatures in four monthly model integrations for 2005, we characterise preferred transport routes from the troposphere to the stratosphere in a high resolution climate model. Most efficient transport is modelled over the Maritime Continent (MC) in November and February, i.e., boreal winter. In these months, the ascending branch of the Walker Circulation over the MC is formed in conjunction with strong deep convection, allowing fast transport into the stratosphere. In the model the upper tropospheric zonal winds associated with the Walker Circulation are also greatest in these months in agreement with ERA-Interim reanalysis data. We conclude that the Walker circulation plays an important role in the seasonality of fast tropical transport from the lower and middle troposphere to the upper troposphere and so impacts at the same time the potential supply of surface emissions to the tropical tropopause layer (TTL) and subsequently to the stratosphere.

Download & links
Publications Copernicus
Download
Citation
Share