Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 12, issue 19
Atmos. Chem. Phys., 12, 9041-9055, 2012
https://doi.org/10.5194/acp-12-9041-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 12, 9041-9055, 2012
https://doi.org/10.5194/acp-12-9041-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 04 Oct 2012

Research article | 04 Oct 2012

Adjoint sensitivity of global cloud droplet number to aerosol and dynamical parameters

V. A. Karydis1, S. L. Capps2, A. G. Russell3, and A. Nenes1,2 V. A. Karydis et al.
  • 1School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
  • 2School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
  • 3School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA

Abstract. We present the development of the adjoint of a comprehensive cloud droplet formation parameterization for use in aerosol-cloud-climate interaction studies. The adjoint efficiently and accurately calculates the sensitivity of cloud droplet number concentration (CDNC) to all parameterization inputs (e.g., updraft velocity, water uptake coefficient, aerosol number and hygroscopicity) with a single execution. The adjoint is then integrated within three dimensional (3-D) aerosol modeling frameworks to quantify the sensitivity of CDNC formation globally to each parameter. Sensitivities are computed for year-long executions of the NASA Global Modeling Initiative (GMI) Chemical Transport Model (CTM), using wind fields computed with the Goddard Institute for Space Studies (GISS) Global Circulation Model (GCM) II', and the GEOS-Chem CTM, driven by meteorological input from the Goddard Earth Observing System (GEOS) of the NASA Global Modeling and Assimilation Office (GMAO). We find that over polluted (pristine) areas, CDNC is more sensitive to updraft velocity and uptake coefficient (aerosol number and hygroscopicity). Over the oceans of the Northern Hemisphere, addition of anthropogenic or biomass burning aerosol is predicted to increase CDNC in contrast to coarse-mode sea salt which tends to decrease CDNC. Over the Southern Oceans, CDNC is most sensitive to sea salt, which is the main aerosol component of the region. Globally, CDNC is predicted to be less sensitive to changes in the hygroscopicity of the aerosols than in their concentration with the exception of dust where CDNC is very sensitive to particle hydrophilicity over arid areas. Regionally, the sensitivities differ considerably between the two frameworks and quantitatively reveal why the models differ considerably in their indirect forcing estimates.

Publications Copernicus
Download
Citation
Share