Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 12, issue 18
Atmos. Chem. Phys., 12, 8491-8498, 2012
https://doi.org/10.5194/acp-12-8491-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 12, 8491-8498, 2012
https://doi.org/10.5194/acp-12-8491-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 21 Sep 2012

Research article | 21 Sep 2012

Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics

Feng Niu1,2 and Zhanqing Li1,2 Feng Niu and Zhanqing Li
  • 1State Key Laboratory of Earth Surface Processes and Resource Ecology, GCESS, Beijing Normal University, Beijing 100875, China
  • 2Dept. of Atmospheric and Oceanic Sciences & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA

Abstract. Aerosols may modify cloud properties and precipitation via a variety of mechanisms with varying and contradicting consequences. Using a large ensemble of satellite data acquired by the Moderate Resolution Imaging Spectroradiometer onboard the Earth Observing System's Aqua platform, the CloudSat cloud profiling radar and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite over the tropical oceans, we identified two distinct correlations of clouds and precipitation with aerosol loading. Cloud-top temperatures are significantly negatively correlated with increasing aerosol index (AI) over oceans and aerosol optical depth (AOT) over land for deep mixed-phase clouds with liquid droplets near the warm bases and ice crystals near the cold tops; no significant changes were found for uniformly liquid clouds. Precipitation rates are positively correlated with the AI for mixed-phase clouds, but negatively correlated for liquid clouds. These distinct correlations might be a manifestation of two potential mechanisms: the invigoration effect (which enhances convection and precipitation) and the microphysical effect (which suppresses precipitation). We note that the highly limited information garnered from satellite products cannot unequivocally support the causal relationships between cloud-top temperature/precipitation rate and aerosol loading. But if aerosols are indeed the causes for the observed relationships, they may change the overall distribution of precipitation, leading to a more extreme and unfavorable rainfall pattern of suppressing light rains and fostering heavy rains.

Publications Copernicus
Download
Citation
Share