Articles | Volume 12, issue 18
https://doi.org/10.5194/acp-12-8359-2012
https://doi.org/10.5194/acp-12-8359-2012
Research article
 | Highlight paper
 | 
18 Sep 2012
Research article | Highlight paper |  | 18 Sep 2012

Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning

P. Q. Fu, K. Kawamura, J. Chen, J. Li, Y. L. Sun, Y. Liu, E. Tachibana, S. G. Aggarwal, K. Okuzawa, H. Tanimoto, Y. Kanaya, and Z. F. Wang

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Technical note: Chemical composition and source identification of fluorescent components in atmospheric water-soluble brown carbon by excitation–emission matrix spectroscopy with parallel factor analysis – potential limitations and applications
Tao Cao, Meiju Li, Cuncun Xu, Jianzhong Song, Xingjun Fan, Jun Li, Wanglu Jia, and Ping'an Peng
Atmos. Chem. Phys., 23, 2613–2625, https://doi.org/10.5194/acp-23-2613-2023,https://doi.org/10.5194/acp-23-2613-2023, 2023
Short summary
Insoluble lipid film mediates transfer of soluble saccharides from the sea to the atmosphere: the role of hydrogen bonding
Minglan Xu, Narcisse Tsona Tchinda, Jianlong Li, and Lin Du
Atmos. Chem. Phys., 23, 2235–2249, https://doi.org/10.5194/acp-23-2235-2023,https://doi.org/10.5194/acp-23-2235-2023, 2023
Short summary
Magnetic fraction of the atmospheric dust in Kraków – physicochemical characteristics and possible environmental impact
Jan M. Michalik, Wanda Wilczyńska-Michalik, Łukasz Gondek, Waldemar Tokarz, Jan Żukrowski, Marta Gajewska, and Marek Michalik
Atmos. Chem. Phys., 23, 1449–1464, https://doi.org/10.5194/acp-23-1449-2023,https://doi.org/10.5194/acp-23-1449-2023, 2023
Short summary
Modeling daytime and nighttime secondary organic aerosol formation via multiphase reactions of biogenic hydrocarbons
Sanghee Han and Myoseon Jang
Atmos. Chem. Phys., 23, 1209–1226, https://doi.org/10.5194/acp-23-1209-2023,https://doi.org/10.5194/acp-23-1209-2023, 2023
Short summary
SO2 enhances aerosol formation from anthropogenic volatile organic compound ozonolysis by producing sulfur-containing compounds
Zhaomin Yang, Kun Li, Narcisse T. Tsona, Xin Luo, and Lin Du
Atmos. Chem. Phys., 23, 417–430, https://doi.org/10.5194/acp-23-417-2023,https://doi.org/10.5194/acp-23-417-2023, 2023
Short summary

Cited articles

Andreae, M. O. and Crutzen, P. J.: Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry, Science, 276, 1052–1058, 1997.
Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, 2008.
Bauer, H., Kasper-Giebl, A., Zibuschka, F., Hitzenberger, R., Kraus, G. F., and Puxbaum, H.: Determination of the carbon content of airborne fungal spores, Anal. Chem., 74, 91–95, 2002.
Bauer, H., Claeys, M., Vermeylen, R., Schueller, E., Weinke, G., Berger, A., and Puxbaum, H.: Arabitol and mannitol as tracers for the quantification of airborne fungal spores, Atmos. Environ., 42, 588–593, 2008.
Burshtein, N., Lang-Yona, N., and Rudich, Y.: Ergosterol, arabitol and mannitol as tracers for biogenic aerosols in the eastern Mediterranean, Atmos. Chem. Phys., 11, 829–839, https://doi.org/10.5194/acp-11-829-2011, 2011.
Download
Altmetrics
Final-revised paper
Preprint