Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 12, issue 15
Atmos. Chem. Phys., 12, 7215-7229, 2012
https://doi.org/10.5194/acp-12-7215-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Summertime boreal forest atmospheric chemistry and physics...

Atmos. Chem. Phys., 12, 7215-7229, 2012
https://doi.org/10.5194/acp-12-7215-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 07 Aug 2012

Research article | 07 Aug 2012

Diel cycles of isoprenoids in the emissions of Norway spruce, four Scots pine chemotypes, and in Boreal forest ambient air during HUMPPA-COPEC-2010

N. Yassaa2,1, W. Song1, J. Lelieveld1, A. Vanhatalo3, J. Bäck3, and J. Williams1 N. Yassaa et al.
  • 1Department of Air Chemistry, Max-Planck Institute for Chemistry, Mainz, Germany
  • 2USTHB, University of Sciences and Technology Houari Boumediene, Faculty of Chemistry, BP 32 El-Alia Bab-Ezzouar, 16111 Algiers, Algeria
  • 3Department of Forest Sciences, University of Helsinki, Finland

Abstract. Branch enclosure based emission rates of monoterpenes and sesquiterpenes from four Scots pines (Pinus sylvestris) and one Norway spruce (Picea abies), as well as the ambient mixing ratios of monoterpenes were determined during the HUMPPA-COPEC 2010 summer campaign. Differences in chemical composition and in emission strength were observed between the different trees, which confirmed that they represented different chemotypes. The chemotypes of Scots pine can be classified according to species with high, no and intermediate content of Δ-3-carene. The "non-Δ-3-carene" chemotype was found to be the strongest emitter of monoterpenes. From this chemotype, β-myrcene, a very reactive monoterpene, was the dominant species accounting for more than 32 % of the total emission rates of isoprenoids followed by β-phellandrene (~27%). Myrcene fluxes ranged from 0.8 to 24 μg g−1 (dw) h−1. α-Farnesene was the dominant sesquiterpene species, with average emission rates of 318 ng g−1 (dw) h−1. In the high Δ-3-carene chemotype, more than 48% of the total monoterpene emission was Δ-3-carene. The average Δ-3-carene emission rate (from chemotype 3), circa 609 ng g−1 (dw) h−1 reported here is consistent with the previously reported summer season value. Daily maximum temperatures varied between 20 and 35 °C during the measurements. The monoterpene emissions from spruce were dominated by limonene (35%), β-phellandrene (15%), α-pinene (14%) and eucalyptol (9%). Total spruce monoterpene emissions ranged from 0.55 up to 12.2 μg g−1 (dw) h−1. Overall the total terpene flux (monoterpenes + sesquiterpenes) from all studied tree species varied from 230 ng g−1 (dw) h−1 up to 66 μg g−1 (dw) h−1. Total ambient monoterpenes (including α-pinene, Δ-3-carene, β-pinene and β-myrcene) measured during the campaign varied in mixing ratio from a few pptv to over one ppbv. The most abundant biogenic VOC measured above the canopy were α-pinene and Δ-3-carene, and these two compounds together contributed more than 50% of the total monoterpenes. The ambient data reflect the emission rate, atmospheric reactivity and tree type abundance. The diel cycles of isoprenoid mixing ratios showed high levels during the night-time which is consistent with continued low nocturnal emission and a low and stable boundary layer. The chirality of α-pinene was dominated by (+)-enantiomers both in the direct emission and in the atmosphere. The two highest emitters showed no enantiomeric preference for α-pinene emissions, whereas the two lowest emitting pines emitted more (+)-enantiomer. The spruce emissions were dominated by (−)-enantiomer. The exceptionally hot temperatures in the summer of 2010 led to relatively strong emissions of monoterpenes, greater diversity in chemical composition and high ambient mixing ratios.

Publications Copernicus
Special issue
Download
Citation
Share