Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year
    5.689
  • CiteScore value: 5.44 CiteScore
    5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 161 Scimago H
    index 161
Volume 12, issue 15
Atmos. Chem. Phys., 12, 6891-6914, 2012
https://doi.org/10.5194/acp-12-6891-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 12, 6891-6914, 2012
https://doi.org/10.5194/acp-12-6891-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 01 Aug 2012

Research article | 01 Aug 2012

Simulation of mineral dust aerosol with Piecewise Log-normal Approximation (PLA) in CanAM4-PAM

Y. Peng1, K. von Salzen2, and J. Li2 Y. Peng et al.
  • 1School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
  • 2Canadian Centre for Climate Modelling and Analysis, Environment Canada, Victoria, British Columbia, Canada

Abstract. A new size-resolved dust scheme based on the numerical method of piecewise log-normal approximation (PLA) was developed and implemented in the fourth generation of the Canadian Atmospheric Global Climate Model with the PLA Aerosol Model (CanAM4-PAM). The total simulated annual global dust emission is 2500 Tg yr−1, and the dust mass load is 19.3 Tg for year 2000. Both are consistent with estimates from other models. Results from simulations are compared with multiple surface measurements near and away from dust source regions, validating the generation, transport and deposition of dust in the model. Most discrepancies between model results and surface measurements are due to unresolved aerosol processes. Biases in long-range transport are also contributing. Radiative properties of dust aerosol are derived from approximated parameters in two size modes using Mie theory. The simulated aerosol optical depth (AOD) is compared with satellite and surface remote sensing measurements and shows general agreement in terms of the dust distribution around sources. The model yields a dust AOD of 0.042 and dust aerosol direct radiative forcing (ADRF) of −1.24 W m−2 respectively, which show good consistency with model estimates from other studies.

Publications Copernicus
Download
Citation
Share