Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year
    5.689
  • CiteScore value: 5.44 CiteScore
    5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 161 Scimago H
    index 161
Volume 12, issue 15
Atmos. Chem. Phys., 12, 6699-6721, 2012
https://doi.org/10.5194/acp-12-6699-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 12, 6699-6721, 2012
https://doi.org/10.5194/acp-12-6699-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 01 Aug 2012

Research article | 01 Aug 2012

The formaldehyde budget as seen by a global-scale multi-constraint and multi-species inversion system

A. Fortems-Cheiney1, F. Chevallier1, I. Pison1, P. Bousquet1, M. Saunois1, S. Szopa1, C. Cressot1, T. P. Kurosu2, K. Chance3, and A. Fried4 A. Fortems-Cheiney et al.
  • 1Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, UMR8212, Gif-sur-Yvette, France
  • 2Jet Propulsion Laboratory, California Institute of Technology, USA
  • 3Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
  • 4Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA

Abstract. For the first time, carbon monoxide (CO) and formaldehyde (HCHO) satellite retrievals are used together with methane (CH4) and methyl choloroform (CH3CCl3 or MCF) surface measurements in an advanced inversion system. The CO and HCHO are respectively from the MOPITT and OMI instruments. The multi-species and multi-satellite dataset inversion is done for the 2005–2010 period. The robustness of our results is evaluated by comparing our posterior-modeled concentrations with several sets of independent measurements of atmospheric mixing ratios. The inversion leads to significant changes from the prior to the posterior, in terms of magnitude and seasonality of the CO and CH4 surface fluxes and of the HCHO production by non-methane volatile organic compounds (NMVOC). The latter is significantly decreased, indicating an overestimation of the biogenic NMVOC emissions, such as isoprene, in the GEIA inventory. CO and CH4 surface emissions are increased by the inversion, from 1037 to 1394 TgCO and from 489 to 529 TgCH4 on average for the 2005–2010 period. CH4 emissions present significant interannual variability and a joint CO-CH4 fluxes analysis reveals that tropical biomass burning probably played a role in the recent increase of atmospheric methane.

Publications Copernicus
Download
Citation
Share