Articles | Volume 12, issue 13
https://doi.org/10.5194/acp-12-5787-2012
https://doi.org/10.5194/acp-12-5787-2012
Research article
 | 
04 Jul 2012
Research article |  | 04 Jul 2012

Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms

J. Ofner, N. Balzer, J. Buxmann, H. Grothe, Ph. Schmitt-Kopplin, U. Platt, and C. Zetzsch

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Technical note: Chemical composition and source identification of fluorescent components in atmospheric water-soluble brown carbon by excitation–emission matrix spectroscopy with parallel factor analysis – potential limitations and applications
Tao Cao, Meiju Li, Cuncun Xu, Jianzhong Song, Xingjun Fan, Jun Li, Wanglu Jia, and Ping'an Peng
Atmos. Chem. Phys., 23, 2613–2625, https://doi.org/10.5194/acp-23-2613-2023,https://doi.org/10.5194/acp-23-2613-2023, 2023
Short summary
Insoluble lipid film mediates transfer of soluble saccharides from the sea to the atmosphere: the role of hydrogen bonding
Minglan Xu, Narcisse Tsona Tchinda, Jianlong Li, and Lin Du
Atmos. Chem. Phys., 23, 2235–2249, https://doi.org/10.5194/acp-23-2235-2023,https://doi.org/10.5194/acp-23-2235-2023, 2023
Short summary
Magnetic fraction of the atmospheric dust in Kraków – physicochemical characteristics and possible environmental impact
Jan M. Michalik, Wanda Wilczyńska-Michalik, Łukasz Gondek, Waldemar Tokarz, Jan Żukrowski, Marta Gajewska, and Marek Michalik
Atmos. Chem. Phys., 23, 1449–1464, https://doi.org/10.5194/acp-23-1449-2023,https://doi.org/10.5194/acp-23-1449-2023, 2023
Short summary
Modeling daytime and nighttime secondary organic aerosol formation via multiphase reactions of biogenic hydrocarbons
Sanghee Han and Myoseon Jang
Atmos. Chem. Phys., 23, 1209–1226, https://doi.org/10.5194/acp-23-1209-2023,https://doi.org/10.5194/acp-23-1209-2023, 2023
Short summary
SO2 enhances aerosol formation from anthropogenic volatile organic compound ozonolysis by producing sulfur-containing compounds
Zhaomin Yang, Kun Li, Narcisse T. Tsona, Xin Luo, and Lin Du
Atmos. Chem. Phys., 23, 417–430, https://doi.org/10.5194/acp-23-417-2023,https://doi.org/10.5194/acp-23-417-2023, 2023
Short summary

Cited articles

Anbar, M. and Ginsburg, D.: Organic hypohalites, Chem. Rev., 54, 925–958, 1954.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006.
Baes, A. U. and Bloom, P. R.: Diffuse Reflectance and Transmission Fourier Transform Infrared (DRIFT) spectroscopy of humic and fulvic acids, Soil Sci. Soc. Am. J., 53, 695–700, 1989.
Barrie, L. and Platt, U.: Arctic tropospheric chemistry: An overview, Tellus, 49B, 449–454, 1997.
Bedjanian, Y., Riffault, V., and Poulet, G.: Kinetic study of the reactions of Br with HO2 and DO2, J. Phys. Chem. A, 105, 573–578, 2001.
Download
Altmetrics
Final-revised paper
Preprint