Articles | Volume 12, issue 11
https://doi.org/10.5194/acp-12-5249-2012
https://doi.org/10.5194/acp-12-5249-2012
Research article
 | 
15 Jun 2012
Research article |  | 15 Jun 2012

Anthropogenic changes in the surface all-sky UV-B radiation through 1850–2005 simulated by an Earth system model

S. Watanabe, T. Takemura, K. Sudo, T. Yokohata, and H. Kawase

Abstract. The historical anthropogenic change in the surface all-sky UV-B (solar ultraviolet: 280–315 nm) radiation through 1850–2005 is evaluated using an Earth system model. Responses of UV-B dose to anthropogenic changes in ozone and aerosols are separately evaluated using a series of historical simulations including/excluding these changes. Increases in these air pollutants cause reductions in UV-B transmittance, which occur gradually/rapidly before/after 1950 in and downwind of industrial and deforestation regions. Furthermore, changes in ozone transport in the lower stratosphere, which is induced by increasing greenhouse gas concentrations, increase ozone concentration in the extratropical upper troposphere and lower stratosphere. These transient changes work to decrease the amount of UV-B reaching the Earth's surface, counteracting the well-known effect increasing UV-B due to stratospheric ozone depletion, which developed rapidly after ca. 1980. As a consequence, the surface UV-B radiation change between 1850 and 2000 is negative in the tropics and NH extratropics and positive in the SH extratropics. Comparing the contributions of ozone and aerosol changes to the UV-B change, the transient change in ozone absorption of UV-B mainly determines the total change in the surface UV-B radiation at most locations. On the other hand, the aerosol direct and indirect effects on UV-B play an equally important role to that of ozone in the NH mid-latitudes and tropics. A typical example is East Asia (25° N–60° N and 120° E–150° E), where the effect of aerosols (ca. 70%) dominates the total UV-B change.

Download
Altmetrics
Final-revised paper
Preprint