Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 12, issue 10
Atmos. Chem. Phys., 12, 4379-4385, 2012
https://doi.org/10.5194/acp-12-4379-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 12, 4379-4385, 2012
https://doi.org/10.5194/acp-12-4379-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 May 2012

Research article | 16 May 2012

Stable carbon isotope fractionation in the UV photolysis of CFC-11 and CFC-12

A. Zuiderweg1, J. Kaiser2, J. C. Laube2, T. Röckmann1, and R. Holzinger1 A. Zuiderweg et al.
  • 1Institute of Marine and Atmospheric research Utrecht (IMAU), Utrecht University, Utrecht, The Netherlands
  • 2School of Environmental Sciences, University of East Anglia, Norwich, UK

Abstract. The chlorofluorocarbons CFC-11 (CFCl3) and CFC-12 (CF2Cl2) are stable atmospheric compounds that are produced at the earth's surface, but removed only at high altitudes in the stratosphere by photolytic reactions. Their removal liberates atomic chlorine that then catalytically destroys stratospheric ozone. For such long-lived compounds, isotope effects in the stratospheric removal reactions have a large effect on their global isotope budgets. We have demonstrated a photolytic isotope fractionation for stable carbon isotopes of CFC-11 and CFC-12 in laboratory experiments using broadband UV-C (190–230 nm) light. 13C/12C isotope fractionations (ε) range from (−23.8±0.9) to (−17.7±0.4) ‰ for CFC-11 and (−66.2±3.1) to (−51.0±2.9) ‰ for CFC-12 between 203 and 288 K, a temperature range relevant to conditions in the troposphere and stratosphere. These results suggest that CFCs should become strongly enriched in 13C with decreasing mixing ratio in the stratosphere, similar to what has been recently observed for CFC chlorine isotopes. In conjunction with the strong variations in CFC emissions before and after the Montréal Protocol, the stratospheric enrichments should also lead to a significant temporal increase in the 13C content of the CFCs at the surface over the past decades, which should be recorded in atmospheric air archives such as firn air.

Publications Copernicus
Download
Citation
Share