Research article
16 May 2012
Research article | 16 May 2012
The isotopic record of Northern Hemisphere atmospheric carbon monoxide since 1950: implications for the CO budget
Z. Wang1, J. Chappellaz2, P. Martinerie2, K. Park1,*, V. Petrenko3,**, E. Witrant4, L. K. Emmons5, T. Blunier6, C. A. M. Brenninkmeijer7, and J. E. Mak1
Z. Wang et al.
Z. Wang1, J. Chappellaz2, P. Martinerie2, K. Park1,*, V. Petrenko3,**, E. Witrant4, L. K. Emmons5, T. Blunier6, C. A. M. Brenninkmeijer7, and J. E. Mak1
- 1Institute for Terrestrial and Planetary Atmospheres/School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- 2UJF – Grenoble 1/CNRS, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE) UMR5183, Grenoble, 38041, France
- 3Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309, USA
- 4Grenoble Image Parole Signal Automatique (GIPSA-lab), Université Joseph Fourier/CNRS, BP 46, 38 402 Saint Martin d'Hères, France
- 5National Center for Atmospheric Research, Atmospheric Chemistry Division, Boulder CO 80301, USA
- 6Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries vej 30, 2100 Copenhagen Ø, Denmark
- 7Max Planck Institute for Chemistry, 55128 Mainz, Germany
- *now at: Division of Polar Climate Research, Korea Polar Research Institute, Incheon, South Korea
- **now at: Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY, USA
- 1Institute for Terrestrial and Planetary Atmospheres/School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- 2UJF – Grenoble 1/CNRS, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE) UMR5183, Grenoble, 38041, France
- 3Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309, USA
- 4Grenoble Image Parole Signal Automatique (GIPSA-lab), Université Joseph Fourier/CNRS, BP 46, 38 402 Saint Martin d'Hères, France
- 5National Center for Atmospheric Research, Atmospheric Chemistry Division, Boulder CO 80301, USA
- 6Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries vej 30, 2100 Copenhagen Ø, Denmark
- 7Max Planck Institute for Chemistry, 55128 Mainz, Germany
- *now at: Division of Polar Climate Research, Korea Polar Research Institute, Incheon, South Korea
- **now at: Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY, USA
Hide
Received: 24 Oct 2011 – Discussion started: 15 Nov 2011 – Revised: 04 Apr 2012 – Accepted: 24 Apr 2012 – Published: 16 May 2012
Abstract. We present a 60-year record of the stable isotopes of atmospheric carbon monoxide (CO) from firn air samples collected under the framework of the North Greenland Eemian Ice Drilling (NEEM) project. CO concentration, δ13C, and δ18O of CO were measured by gas chromatography/isotope ratio mass spectrometry (gc-IRMS) from trapped gases in the firn. We applied LGGE-GIPSA firn air models (Witrant et al., 2011) to correlate gas age with firn air depth and then reconstructed the trend of atmospheric CO and its stable isotopic composition at high northern latitudes since 1950. The most probable firn air model scenarios show that δ13C decreased slightly from −25.8‰ in 1950 to −26.4‰ in 2000, then decreased more significantly to −27.2‰ in 2008. δ18O decreased more regularly from 9.8‰ in 1950 to 7.1‰ in 2008. Those same scenarios show CO concentration increased gradually from 1950 and peaked in the late 1970s, followed by a gradual decrease to present day values (Petrenko et al., 2012). Results from an isotope mass balance model indicate that a slight increase, followed by a large reduction, in CO derived from fossil fuel combustion has occurred since 1950. The reduction of CO emission from fossil fuel combustion after the mid-1970s is the most plausible mechanism for the drop of CO concentration during this time. Fossil fuel CO emissions decreased as a result of the implementation of catalytic converters and the relative growth of diesel engines, in spite of the global vehicle fleet size having grown several fold over the same time period.