Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 12, issue 1
Atmos. Chem. Phys., 12, 425-436, 2012
https://doi.org/10.5194/acp-12-425-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 12, 425-436, 2012
https://doi.org/10.5194/acp-12-425-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 06 Jan 2012

Research article | 06 Jan 2012

Vertical structure of MJO-related subtropical ozone variations from MLS, TES, and SHADOZ data

K.-F. Li1, B. Tian2, D. E. Waliser2, M. J. Schwartz2, J. L. Neu2, J. R. Worden2, and Y. L. Yung1 K.-F. Li et al.
  • 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
  • 2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

Abstract. Tian et al. (2007) found that the MJO-related total column ozone (O3) anomalies of 10 DU (peak-to-trough) are mainly evident over the subtropics and dynamically driven by the vertical movement of the subtropical tropopause layer. It was then hypothesized that the subtropical total column O3 anomalies are primarily associated with the O3 variability in the stratosphere rather the troposphere. In this paper, we investigate the vertical structure of MJO-related subtropical O3 variations using the vertical O3 profiles from the Aura Microwave Limb Sounder (MLS) and Tropospheric Emission Spectrometer (TES), as well as in-situ measurements by the Southern Hemisphere Additional Ozonesondes (SHADOZ) project. Our analysis indicates that the subtropical O3 anomalies maximize approximately in the lower stratosphere (60–100 hPa). Furthermore, the spatial-temporal patterns of the subtropical O3 anomalies in the lower stratosphere are very similar to that of the total column. In particular, they are both dynamically driven by the vertical movement of subtropical tropopause. The subtropical partial O3 column anomalies between 30–200 hPa accounts for more than 50 % of the total O3 column anomalies. TES measurements show that at most 27 % of the total O3 column anomalies are contributed by the tropospheric components. This indicates that the subtropical total column O3 anomalies are mostly from the O3 anomalies in the lower stratosphere, which supports the hypothesis of Tian et al. (2007). The strong connection between the intraseasonal subtropical stratospheric O3 variations and the MJO implies that the stratospheric O3 variations may be predictable with similar lead times over the subtropics. Future work could involve a similar study or an O3 budget analysis using a sophisticated chemical transport model in the near-equatorial regions where the observed MJO signals of total column O3 are weak.

Publications Copernicus
Download
Citation
Share