Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 12, issue 7
Atmos. Chem. Phys., 12, 3219-3240, 2012
https://doi.org/10.5194/acp-12-3219-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 12, 3219-3240, 2012
https://doi.org/10.5194/acp-12-3219-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 03 Apr 2012

Research article | 03 Apr 2012

3-D evaluation of tropospheric ozone simulations by an ensemble of regional Chemistry Transport Model

D. Zyryanov1, G. Foret1, M. Eremenko1, M. Beekmann1, J.-P. Cammas2, M. D'Isidoro3,12, H. Elbern4, J. Flemming5, E. Friese4, I. Kioutsioutkis9, A. Maurizi3, D. Melas9, F. Meleux6, L. Menut7, P. Moinat8, V.-H. Peuch8, A. Poupkou9, M. Razinger5, M. Schultz10, O. Stein10, A. M. Suttie5, A. Valdebenito11, C. Zerefos9, G. Dufour1, G. Bergametti1, and J.-M. Flaud1 D. Zyryanov et al.
  • 1Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR7583, CNRS/INSU – Université Paris Est Créteil (UPEC) et Université Paris Diderot (UPD), France
  • 2Laboratoire d'Aérologie, UMR5560, CNRS and Université de Toulouse, Toulouse, France
  • 3Institute of Atmospheric Sciences and Climate, CNR, Bologna, Italy
  • 4Rhenish Institute for Environmental Research at the University of Cologne, Köln, Germany
  • 5European Centre for Medium range Weather Forecasting, Reading, UK
  • 6INERIS, Institut National de l'Environnement Industriel et des Risques, Parc techn. ALATA, Verneuil-en Halatte, France
  • 7Laboratoire de Météorologie Dynamique, IPSL, Ecole Polytechnique, Palaiseau, France
  • 8Météo-France, Centre National de Recherche Météorologique, Toulouse, France
  • 9Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Greece
  • 10FZ Jülich, Institute for chemistry and dynamics of the Geoshere-2: Troposphere, Jülich, Germany
  • 11Norwegian Meteorological Institute, Oslo, Norway
  • 12Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy

Abstract. A detailed 3-D evaluation of an ensemble of five regional Chemistry Transport Models (RCTM) and one global CTM with focus on free tropospheric ozone over Europe is presented. It is performed over a summer period (June to August 2008) in the context of the GEMS-RAQ project. A data set of about 400 vertical ozone profiles from balloon soundings and commercial aircraft at 11 different locations is used for model evaluation, in addition to satellite measurements with the infrared nadir sounder (IASI) showing largest sensitivity to free tropospheric ozone. In the middle troposphere, the four regional models using the same top and boundary conditions from IFS-MOZART exhibit a systematic negative bias with respect to observed profiles of about −20%. Root Mean Square Error (RMSE) values are constantly growing with altitude, from 22% to 32% to 53%, respectively for 0–2 km, 2–8 km and 8–10 km height ranges. Lowest correlation is found in the middle troposphere, with minimum coefficients (R) between 0.2 to 0.45 near 8 km, as compared to 0.7 near the surface and similar values around 10 km. A sensitivity test made with the CHIMERE mode also shows that using hourly instead of monthly chemical boundary conditions generally improves the model skill (i.e. improve RMSE and correlation). Lower tropospheric 0–6 km partial ozone columns derived from IASI show a clear North-South gradient over Europe, which is qualitatively reproduced by the models. Also the temporal variability showing decreasing ozone concentrations in the lower troposphere (0–6 km columns) during summer is well reproduced by models even if systematic bias remains (the value of the bias being also controlled by the type of used boundary conditions). A multi-day case study of a trough with low tropopause was conducted and showed that both IASI and models were able to resolve strong horizontal gradients of middle and upper tropospheric ozone occurring in the vicinity of an upper tropospheric frontal zone.

Publications Copernicus
Download
Citation
Share