Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 12, issue 4 | Copyright
Atmos. Chem. Phys., 12, 1995-2006, 2012
https://doi.org/10.5194/acp-12-1995-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 21 Feb 2012

Research article | 21 Feb 2012

Evaluation of the smoke-injection height from wild-land fires using remote-sensing data

M. Sofiev1, T. Ermakova2, and R. Vankevich2 M. Sofiev et al.
  • 1Finnish Meteorological Institute, Finland
  • 2Russian State Hydrometeorological University, Russia

Abstract. A new methodology for the estimation of smoke-injection height from wild-land fires is proposed and evaluated. It is demonstrated that the approaches developed for estimating the plume rise from stacks, such as the formulas of G. Briggs, can be formally written in terms characterising the wild-land fires: fire energy, size and temperature. However, these semi-empirical methods still perform quite poorly because the physical processes controlling the uplift of the wildfire plumes differ from those controlling the plume rise from stacks. The proposed new methodology considers wildfire plumes in a way similar to Convective Available Potential Energy (CAPE) computations. The new formulations are applied to a dataset collected within the MISR Plume Height Project for about 2000 fire plumes in North America and Siberia. The estimates of the new method are compared with remote-sensing observations of the plume top by the MISR instrument, with two versions of the Briggs' plume-rise formulas, with the 1-D plume-rise model BUOYANT, and with the prescribed plume-top position (the approach widely used in dispersion modelling). The new method has performed significantly better than all these approaches. For two-thirds of the cases, its predictions deviated from the MISR observations by less than 500 m, which is the uncertainty of the observations themselves. It is shown that the fraction of "good" predictions is much higher (>80%) for the plumes reaching the free troposphere.

Download & links
Publications Copernicus
Download
Citation
Share