Articles | Volume 12, issue 4
https://doi.org/10.5194/acp-12-1951-2012
https://doi.org/10.5194/acp-12-1951-2012
Research article
 | 
20 Feb 2012
Research article |  | 20 Feb 2012

Temporal trend and sources of speciated atmospheric mercury at Waliguan GAW station, Northwestern China

X. W. Fu, X. Feng, P. Liang, Deliger, H. Zhang, J. Ji, and P. Liu

Abstract. Measurements of speciated atmospheric mercury were conducted at a remote mountain-top station (Waliguan (WLG) Baseline Observatory) at the edge of northeastern part of the Qinghai-Xizang Plateau, Western China. Mean concentrations of total gaseous mercury (TGM), particulate bound mercury (PBM), and gaseous oxidized mercury (GOM) during the whole sampling campaign were 1.98±0.98 ng m−3, 19.4±18.1 pg m−3, and 7.4±4.8 pg m−3, respectively. Levels of speciated Hg at WLG were slightly higher than those reported from remote areas of North America and Europe. Both regional sources and long-rang transport played important roles in the distribution of atmospheric TGM and PBM at WLG, whereas GOM showed major links to the regional sources, likely as well as the in-situ productions via photochemical processes. Regional sources for speciated Hg were mostly located to the east of WLG, which is the most industrial and urbanized areas of Qinghai province. Potential source contribution function (PSCF) results showed that eastern Gansu, western Ningxia and Shanxi Province were likely the potential source regions of WLG, with good accordance with locations of urban areas and industrial centers. Moreover, we found that Northern India may be a significant source region for WLG during the sampling campaign, and this is the first published evidence suggesting long-range transport of atmospheric Hg from India to the Northeastern Tibetan Plateau. Seasonal and diurnal variations of TGM were in contrast to most of the previous studies in China, with relatively higher levels in warm seasons and night, respectively. The temporal trend of TGM also highlighted the impact of long-range transport on the distribution of TGM in ambient air at WLG.

Download
Altmetrics
Final-revised paper
Preprint