Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 12, issue 3 | Copyright

Special issue: The Modular Earth Submodel System (MESSy) (ACP/GMD inter-journal...

Atmos. Chem. Phys., 12, 1611-1627, 2012
https://doi.org/10.5194/acp-12-1611-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 14 Feb 2012

Research article | 14 Feb 2012

The Mineral Dust Cycle in EMAC 2.40: sensitivity to the spectral resolution and the dust emission scheme

G. Gläser1, A. Kerkweg1, and H. Wernli2 G. Gläser et al.
  • 1Institute for Atmospheric Physics, University of Mainz, 55099 Mainz, Germany
  • 2Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Abstract. This first detailed analysis of the mineral dust cycle in the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model system investigates the performance of two dust emission schemes, following the approach of Balkanski et al. (2004) and Tegen et al. (2002), respectively, and the influence of the horizontal model resolution. Here the spectral resolutions T42, T63, T85, and T106 are investigated. A basic sulphur chemistry, enabling the coating of insoluble dust particles to make them soluble, is employed in order to realistically describe the ageing and wet deposition of mineral dust. Independent of the dust emission scheme the five-year simulations with the horizontal resolutions T42 and T63 produce unrealistically high emissions at some grid points in the Tarim Basin in Central Asia, leading to very high dust loads in polar regions. With these coarse resolutions, dust source grid points in the basin and elevated grid points of the Himalayas with high wind speeds cannot be distinguished, causing this overestimation. In T85 and T106 these regions are well separated and considerably less dust is emitted there. With the chosen model setup, the dust emission scheme by Balkanski et al. (2004) places the global maximum of emissions in the Thar Desert in India. This is unrealistic as the Sahara Desert is known to be the largest dust source in the world. This is the main deficiency of this scheme compared to the one by Tegen et al. (2002), which, based on a qualitative comparison to AEROCOM data, produces a very reasonable distribution of emissions and dust loads in simulations with resolutions T85 and T106. For future climate simulations with EMAC focusing on mineral dust, we recommend to use the dust emission scheme by Tegen et al. (2002) and a model resolution of at least T85. Simulations of two selected episodes and comparison to observational data sets show that in this model configuration EMAC is able to realistically simulate also intense, episodic events of dust emission and long-range transport.

Download & links
Publications Copernicus
Special issue
Download
Citation
Share