Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 12, 1255-1285, 2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
01 Feb 2012
Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC
S. Choi1, Y. Wang1, R. J. Salawitch2, T. Canty2, J. Joiner3, T. Zeng1, T. P. Kurosu4,*, K. Chance4, A. Richter5, L. G. Huey1, J. Liao1, J. A. Neuman6,7, J. B. Nowak6,7, J. E. Dibb8, A. J. Weinheimer9, G. Diskin10, T. B. Ryerson7, A. da Silva3, J. Curry1, D. Kinnison9, S. Tilmes9, and P. F. Levelt11,12 1Georgia Institue of Technology, Atlanta, GA, USA
2University of Maryland College Park, College Park, MD, USA
3NASA Goddard Space Flight Center, Greenbelt, MD, USA
4Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
5Institute of Environmental Physics, University of Bremen, Bremen, Germany
6Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO, USA
7NOAA Earth System Research Laboratory, Boulder, CO, USA
8University of New Hampshire, Durham, NH, USA
9National Center for Atmospheric Research, Boulder, CO, USA
10NASA Langley Research Center, Hampton, VA, USA
11Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
12University of Technology Eindhoven, Eindhoven, The Netherlands
*now at: NASA Jet Propulsion Laboratory, Pasadena, CA, USA
Abstract. We derive tropospheric column BrO during the ARCTAS and ARCPAC field campaigns in spring 2008 using retrievals of total column BrO from the satellite UV nadir sensors OMI and GOME-2 using a radiative transfer model and stratospheric column BrO from a photochemical simulation. We conduct a comprehensive comparison of satellite-derived tropospheric BrO column to aircraft in-situ observations of BrO and related species. The aircraft profiles reveal that tropospheric BrO, when present during April 2008, was distributed over a broad range of altitudes rather than being confined to the planetary boundary layer (PBL). Perturbations to the total column resulting from tropospheric BrO are the same magnitude as perturbations due to longitudinal variations in the stratospheric component, so proper accounting of the stratospheric signal is essential for accurate determination of satellite-derived tropospheric BrO. We find reasonably good agreement between satellite-derived tropospheric BrO and columns found using aircraft in-situ BrO profiles, particularly when satellite radiances were obtained over bright surfaces (albedo >0.7), for solar zenith angle <80° and clear sky conditions. The rapid activation of BrO due to surface processes (the bromine explosion) is apparent in both the OMI and GOME-2 based tropospheric columns. The wide orbital swath of OMI allows examination of the evolution of tropospheric BrO on about hourly time intervals near the pole. Low surface pressure, strong wind, and high PBL height are associated with an observed BrO activation event, supporting the notion of bromine activation by high winds over snow.

Citation: Choi, S., Wang, Y., Salawitch, R. J., Canty, T., Joiner, J., Zeng, T., Kurosu, T. P., Chance, K., Richter, A., Huey, L. G., Liao, J., Neuman, J. A., Nowak, J. B., Dibb, J. E., Weinheimer, A. J., Diskin, G., Ryerson, T. B., da Silva, A., Curry, J., Kinnison, D., Tilmes, S., and Levelt, P. F.: Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC, Atmos. Chem. Phys., 12, 1255-1285,, 2012.
Publications Copernicus