Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 12, issue 22
Atmos. Chem. Phys., 12, 11213–11227, 2012
https://doi.org/10.5194/acp-12-11213-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 12, 11213–11227, 2012
https://doi.org/10.5194/acp-12-11213-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 27 Nov 2012

Research article | 27 Nov 2012

Simulation of nitrate, sulfate, and ammonium aerosols over the United States

J. M. Walker1, S. Philip3, R. V. Martin3,4, and J. H. Seinfeld1,2 J. M. Walker et al.
  • 1Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, California, USA
  • 2Department of Chemical Engineering, California Institute of Technology, Pasadena, California, USA
  • 3Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
  • 4Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA

Abstract. Atmospheric concentrations of inorganic gases and aerosols (nitrate, sulfate, and ammonium) are simulated for 2009 over the United States using the chemical transport model GEOS-Chem. Predicted aerosol concentrations are compared with surface-level measurement data from the Interagency Monitoring of Protected Visual Environments (IMPROVE), the Clean Air Status and Trends Network (CASTNET), and the California Air Resources Board (CARB). Sulfate predictions nationwide are in reasonably good agreement with observations, while nitrate and ammonium are over-predicted in the East and Midwest, but under-predicted in California, where observed concentrations are the highest in the country. Over-prediction of nitrate in the East and Midwest is consistent with results of recent studies, which suggest that nighttime nitric acid formation by heterogeneous hydrolysis of N2O5 is over-predicted based on current values of the N2O5 uptake coefficient, γ, onto aerosols. After reducing the value of γ by a factor of 10, predicted nitrate levels in the US Midwest and East still remain higher than those measured, and over-prediction of nitrate in this region remains unexplained. Comparison of model predictions with satellite measurements of ammonia from the Tropospheric Emissions Spectrometer (TES) indicates that ammonia emissions in GEOS-Chem are underestimated in California and that the nationwide seasonality applied to ammonia emissions in GEOS-Chem does not represent California very well, particularly underestimating winter emissions. An ammonia sensitivity study indicates that GEOS-Chem simulation of nitrate is ammonia-limited in southern California and much of the state, suggesting that an underestimate of ammonia emissions is likely the main cause for the under-prediction of nitrate aerosol in many areas of California. An approximate doubling of ammonia emissions is needed to reproduce observed nitrate concentrations in southern California and in other ammonia sensitive areas of California. However, even a tenfold increase in ammonia emissions yields predicted nitrate concentrations that are still biased low in the central valley of California. The under-prediction of nitrate aerosol in the central valley of California may arise in part from an under-prediction of both ammonia and nitric acid in this region. Since nitrate aerosols are particularly sensitive to mixed layer depths, owing to the gas-particle equilibrium, the nitrate under-prediction could also arise in part from a potential regional overestimate of GEOS-5 mixed layer depths in the central valley due to unresolved topography in this region.

Publications Copernicus
Download
Citation