Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 11, issue 17
Atmos. Chem. Phys., 11, 9367-9374, 2011
https://doi.org/10.5194/acp-11-9367-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Atmospheric implications of the volcanic eruptions of Eyjafjallajökull,...

Atmos. Chem. Phys., 11, 9367-9374, 2011
https://doi.org/10.5194/acp-11-9367-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 09 Sep 2011

Research article | 09 Sep 2011

Particle size distribution factor as an indicator for the impact of the Eyjafjallajökull ash plume at ground level in Augsburg, Germany

M. Pitz1,2, J. Gu1,2, J. Soentgen2, A. Peters1, and J. Cyrys1,2 M. Pitz et al.
  • 1Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology II, 85764 Neuherberg, Germany
  • 2University of Augsburg, Environment Science Center, 86159 Augsburg, Germany

Abstract. During the time period of the Eyjafjallajökull volcano eruption in 2010 increased mass concentration of PM10 (particulate matter, diameter <10 μm) were observed at ground level in Augsburg, Germany. In particular on 19 and 20 April 2010 the daily PM10 limit value of 50 μg m−3 was exceeded. Because ambient particles are in general a complex mixture originating from different sources, a source apportionment method (positive matrix factorization (PMF)) was applied to particle size distribution data in the size range from 3 nm to 10 μm to identify and estimate the volcanic ash contribution to the overall PM10 load in the ambient air in Augsburg. A PMF factor with relevant particle mass concentration in the size range between 1 and 4 μm (maximum at 2 μm) was associated with long range transported dust. This factor increased from background concentration to high levels simultaneously with the arrival of the volcanic ash plume in the planetary boundary layer. Hence, we assume that this factor could be used as an indicator for the impact of the Eyjafjallajökull ash plume on ground level in Augsburg. From 17 to 22 April 2010 long range transported dust factor contributed on average 30 % (12 μg m−3) to PM10. On 19 April 2010 at 20:00 UTC+1 the maximum percentage of the long range transported dust factor accounted for around 65 % (35 μg m−3) to PM10 and three hours later the maximum absolute value with around 48 μg m−3 (61 %) was observed. Additional PMF analyses for a Saharan dust event occurred in May and June 2008 suggest, that the long range transported dust factor could also be used as an indicator for Saharan dust events.

Publications Copernicus
Special issue
Download
Citation
Share