Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 11, issue 17
Atmos. Chem. Phys., 11, 8861-8881, 2011
https://doi.org/10.5194/acp-11-8861-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 11, 8861-8881, 2011
https://doi.org/10.5194/acp-11-8861-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 01 Sep 2011

Research article | 01 Sep 2011

Size-resolved aerosol emission factors and new particle formation/growth activity occurring in Mexico City during the MILAGRO 2006 Campaign

A. J. Kalafut-Pettibone1,*, J. Wang2, W. E. Eichinger3, A. Clarke4, S. A. Vay5, D. R. Blake6, and C. O. Stanier1 A. J. Kalafut-Pettibone et al.
  • 1Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USA
  • 2Atmospheric Sciences Division, Brookhaven National Laboratory, Upton, NY 11973, USA
  • 3Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA 52242, USA
  • 4School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, HI 96822, USA
  • 5NASA Langley Research Center, Hampton, VA 23681, USA
  • 6Department of Chemistry, University of California-Irvine, Irvine, CA 92697, USA
  • *current address: Chemical and Biochemical Reference Data Division, Mailstop 8320 National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

Abstract. Measurements of the aerosol size distribution from 11 nm to 2.5 microns were made in Mexico City in March 2006, during the MILAGRO (Megacity Initiative: Local and Global Research Observations) field campaign. Observations at the urban supersite, referred to as T0, could often be characterized by morning conditions with high particle mass concentrations, low mixing heights, and highly correlated particle number and CO2 concentrations, indicative that particle number is controlled by primary emissions. Average size-resolved and total number- and volume-based emission factors for combustion sources impacting T0 have been determined using a comparison of peak sizes in particle number and CO2 concentration. Peaks are determined by subtracting the measured concentration from a calculated baseline concentration time series. The number emission and volume emission factors for particles from 11 nm to 494 nm are 1.56 × 1015 particles, and 9.48 × 1011 cubic microns per kg of carbon, respectively. The uncertainty of the number emission factor is approximately plus or minus 50 %. The mode of the number emission factor was between 25 and 32 nm, while the mode of the volume factor was between 0.25 and 0.32 microns. These emission factors are reported as log normal model parameters and are compared with multiple emission factors from the literature. In Mexico City in the afternoon, the CO2 concentration drops during ventilation of the polluted layer, and the coupling between CO2 and particle number breaks down, especially during new particle formation events when particle number is no longer controlled by primary emissions. Using measurements of particle number and CO2 taken aboard the NASA DC-8, the determined primary emission factor was applied to the Mexico City Metropolitan Area (MCMA) plume to quantify the degree of secondary particle formation in the plume; the primary emission factor accounts for less than 50 % of the total particle number and the surplus particle count is not correlated with photochemical age. Primary particle volume and number in the size range 0.1–2 μm are similarly too low to explain the observed volume distribution. Contrary to the case for number, the apparent secondary volume increases with photochemical age. The size distribution of the apparent increase, with a mode at ~250 nm, is reported.

Publications Copernicus
Download
Citation
Share