Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 11, issue 16
Atmos. Chem. Phys., 11, 8489–8495, 2011
https://doi.org/10.5194/acp-11-8489-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface...

Atmos. Chem. Phys., 11, 8489–8495, 2011
https://doi.org/10.5194/acp-11-8489-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 19 Aug 2011

Research article | 19 Aug 2011

Horizontal variability of aerosol optical depth observed during the ARCTAS airborne experiment

Y. Shinozuka and J. Redemann Y. Shinozuka and J. Redemann
  • Bay Area Environmental Research Institute, Sonoma, California, USA

Abstract. We present statistics on the horizontal variability of aerosol optical depth (AOD) directly measured from the NASA P-3 aircraft. Our measurements during two contrasting phases (in Alaska and Canada) of the ARCTAS mission arguably constrain the variability in most aerosol environments common over the globe. In the Canada phase, which features local emissions, 499 nm AOD has a median relative standard deviation (stdrel, med) of 19 % and 9 % and an autocorrelation (r) of 0.37 and 0.71 over 20 km and 6 km horizontal segments, respectively. In the Alaska phase, which features long-range transport, the variability is considerably lower (stdrel, med = 3 %, r = 0.92 even over 35.2 km). Compared to the magnitude of AOD, its wavelength dependence varies less in the Canada phase, more in the Alaska phase. We translate these findings from straight-line flight tracks into grid boxes and points, to help interpretation and design of satellite remote sensing, suborbital observations and transport modeling.

Publications Copernicus
Download
Citation