Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 11, 7925-7942, 2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
04 Aug 2011
Satellite- and ground-based CO total column observations over 2010 Russian fires: accuracy of top-down estimates based on thermal IR satellite data
L. N. Yurganov1, V. Rakitin2, A. Dzhola2, T. August3, E. Fokeeva2, M. George4, G. Gorchakov2, E. Grechko2, S. Hannon1, A. Karpov2, L. Ott5, E. Semutnikova6, R. Shumsky2, and L. Strow1 1Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD, USA
2Obukhov Institute of Atmospheric Physics, Moscow, Russia
3EUMETSAT, Darmstadt, Germany
4UPMC, Univ. Paris 06, Univ. Versailles St-Quentin, CNRS/INSU, LATMOS-IPSL, Paris, France
5NASA, Goddard Space Flight Center, Greenbelt, MD, USA
6Mosecomonitoring, Moscow, Russia
Abstract. CO total column data are presented from three space sounders and two ground-based spectrometers in Moscow and its suburbs during the forest and peat fires that occurred in Central Russia in July–August 2010. Also presented are ground-based in situ CO measurements. The Moscow area was strongly impacted by the CO plume from these fires. Concurrent satellite- and ground-based observations were used to quantify the errors of CO top-down emission estimates. On certain days, CO total columns retrieved from the data of the space-based sounders were 2–3 times less than those obtained from the ground-based sun-tracking spectrometers. The depth of the polluted layer over Moscow was estimated using total column measurements compared with CO volume mixing ratios in the surface layer and on the TV tower and found to be around 360 m. The missing CO that is the average difference between the CO total column accurately determined by the ground spectrometers and that retrieved by AIRS, MOPITT, and IASI was determined for the Moscow area between 1.6 and 3.3 × 1018 molec cm−2. These values were extrapolated onto the entire plume; subsequently, the CO burden (total mass) over Russia during the fire event was corrected. A top-down estimate of the total emitted CO, obtained by a simple mass balance model increased by 40–100 % for different sensors due to this correction. Final assessments of total CO emitted by Russian wildfires obtained from different sounders are between 34 and 40 Tg CO during July–August 2010.

Citation: Yurganov, L. N., Rakitin, V., Dzhola, A., August, T., Fokeeva, E., George, M., Gorchakov, G., Grechko, E., Hannon, S., Karpov, A., Ott, L., Semutnikova, E., Shumsky, R., and Strow, L.: Satellite- and ground-based CO total column observations over 2010 Russian fires: accuracy of top-down estimates based on thermal IR satellite data, Atmos. Chem. Phys., 11, 7925-7942,, 2011.
Publications Copernicus