Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 11, issue 13
Atmos. Chem. Phys., 11, 6367–6386, 2011
https://doi.org/10.5194/acp-11-6367-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 11, 6367–6386, 2011
https://doi.org/10.5194/acp-11-6367-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 06 Jul 2011

Research article | 06 Jul 2011

Organic functional groups in aerosol particles from burning and non-burning forest emissions at a high-elevation mountain site

S. Takahama1, R. E. Schwartz1, L. M. Russell1, A. M. Macdonald2, S. Sharma2, and W. R. Leaitch2 S. Takahama et al.
  • 1Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
  • 2Environment Canada, Sci. Technol. Branch, Toronto, ON, Canada

Abstract. Ambient particles collected on teflon filters at the Peak of Whistler Mountain, British Columbia (2182 m a.s.l.) during spring and summer 2009 were measured by Fourier transform infrared (FTIR) spectroscopy for organic functional groups (OFG). The project mean and standard deviation of organic aerosol mass concentrations (OM) for all samples was 3.2±3.3 (μg m−3). Measurements of aerosol mass fragments, size, and number concentrations were used to separate fossil-fuel combustion and burning and non-burning forest sources of the measured organic aerosol. The OM was composed of the same anthropogenic and non-burning forest components observed at Whistler mid-valley in the spring of 2008; during the 2009 campaign, biomass burning aerosol was additionally observed from fire episodes occurring between June and September. On average, organic hydroxyl, alkane, carboxylic acid, ketone, and primary amine groups represented 31 %±11 %, 34 %±9 %, 23 %±6 %, 6 %±7 %, and 6 %±3 % of OM, respectively. Ketones in aerosols were associated with burning and non-burning forest origins, and represented up to 27 % of the OM. The organic aerosol fraction resided almost entirely in the submicron fraction without significant diurnal variations. OM/OC mass ratios ranged mostly between 2.0 and 2.2 and O/C atomic ratios between 0.57 and 0.76, indicating that the organic aerosol reaching the site was highly aged and possibly formed through secondary formation processes.

Publications Copernicus
Download
Citation