Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 11, issue 13 | Copyright
Atmos. Chem. Phys., 11, 6265-6272, 2011
https://doi.org/10.5194/acp-11-6265-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 01 Jul 2011

Research article | 01 Jul 2011

Atmospheric acidification of mineral aerosols: a source of bioavailable phosphorus for the oceans

A. Nenes1,2,3, M. D. Krom4, N. Mihalopoulos3,5, P. Van Cappellen1, Z. Shi4, A. Bougiatioti5, P. Zarmpas5, and B. Herut6 A. Nenes et al.
  • 1School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
  • 2School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
  • 3Institute of Chemical Engineering and High Temperature Chemical Processes, Foundation for Research and Technology Hellas, Patras, Greece
  • 4Earth and Biosphere Institute, School of Earth and Environment, University of Leeds, Leeds, UK
  • 5Department of Chemistry, University of Crete, Heraklion, Crete, Greece
  • 6Israel Oceanographic Limnological Research, Tel Shikmona, Haifa, Israel

Abstract. Primary productivity of continental and marine ecosystems is often limited or co-limited by phosphorus. Deposition of atmospheric aerosols provides the major external source of phosphorus to marine surface waters. However, only a fraction of deposited aerosol phosphorus is water soluble and available for uptake by phytoplankton. We propose that atmospheric acidification of aerosols is a prime mechanism producing soluble phosphorus from soil-derived minerals. Acid mobilization is expected to be pronounced where polluted and dust-laden air masses mix. Our hypothesis is supported by the soluble compositions and reconstructed pH values for atmospheric particulate matter samples collected over a 5-yr period at Finokalia, Crete. In addition, at least tenfold increase in soluble phosphorus was observed when Saharan soil and dust were acidified in laboratory experiments which simulate atmospheric conditions. Aerosol acidification links bioavailable phosphorus supply to anthropogenic and natural acidic gas emissions, and may be a key regulator of ocean biogeochemistry.

Download & links
Publications Copernicus
Download
Citation
Share