Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 11, issue 9 | Copyright

Special issue: The Modular Earth Submodel System (MESSy) (ACP/GMD inter-journal...

Atmos. Chem. Phys., 11, 4521-4531, 2011
https://doi.org/10.5194/acp-11-4521-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 May 2011

Research article | 12 May 2011

Geomagnetic activity related NOx enhancements and polar surface air temperature variability in a chemistry climate model: modulation of the NAM index

A. J. G. Baumgaertner1,*, A. Seppälä2,4, P. Jöckel1,3, and M. A. Clilverd2 A. J. G. Baumgaertner et al.
  • 1Max Planck Institute for Chemistry, 55020 Mainz, Germany
  • 2British Antarctic Survey, Cambridge, UK
  • 3Finnish Meteorological Institute, Helsinki, Finland
  • 4Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, 82234 Weßling, Germany
  • *now at: Deutsches Zentrum für Luft- und Raumfahrt (DLR), Project Management Agency, 53227 Bonn, Germany

Abstract. The atmospheric chemistry general circulation model ECHAM5/MESSy is used to simulate polar surface air temperature effects of geomagnetic activity variations. A transient model simulation was performed for the years 1960–2004 and is shown to develop polar surface air temperature patterns that depend on geomagnetic activity strength, similar to previous studies. In order to eliminate influencing factors such as sea surface temperatures (SST) or UV variations, two nine-year long simulations were carried out, with strong and weak geomagnetic activity, respectively, while all other boundary conditions were held to year 2000 levels. Statistically significant temperature effects that were observed in previous reanalysis and model results are also obtained from this set of simulations, suggesting that such patterns are indeed related to geomagnetic activity. In the model, strong geomagnetic activity and the associated NOx (= NO + NO2) enhancements lead to polar stratospheric ozone loss. Compared with the simulation with weak geomagnetic activity, the ozone loss causes a decrease in ozone radiative cooling and thus a temperature increase in the polar winter mesosphere. Similar to previous studies, a cooling is found below the stratopause, which other authors have attributed to a decrease in the mean meridional circulation. In the polar stratosphere this leads to a more stable vortex. A strong (weak) Northern Hemisphere vortex is known to be associated with a positive (negative) Northern Annular Mode (NAM) index; our simulations exhibit a positive NAM index for strong geomagnetic activity, and a negative NAM for weak geomagnetic activity. Such NAM anomalies have been shown to propagate to the surface, and this is also seen in the model simulations. NAM anomalies are known to lead to specific surface temperature anomalies: a positive NAM is associated with warmer than average northern Eurasia and colder than average eastern North Atlantic. This is also the case in our simulation. Our simulations suggest a link between geomagnetic activity, ozone loss, stratospheric cooling, the NAM, and surface temperature variability. Further work is required to identify the precise cause and effect of the coupling between these regions.

Download & links
  • Notice on corrigendum

    The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

  • Article (3415 KB)
Publications Copernicus
Special issue
Download
Notice on corrigendum

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Citation
Share