Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 11, issue 4 | Copyright
Atmos. Chem. Phys., 11, 1813-1835, 2011
https://doi.org/10.5194/acp-11-1813-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 28 Feb 2011

Research article | 28 Feb 2011

Influence of meteorology on PM10 trends and variability in Switzerland from 1991 to 2008

I. Barmpadimos1, C. Hueglin2, J. Keller1, S. Henne2, and A. S. H. Prévôt1 I. Barmpadimos et al.
  • 1Paul Scherrer Institute, Villigen, Switzerland
  • 2Swiss Federal Laboratories for Material Science and Technology, Dübendorf, Switzerland

Abstract. Measurements of airborne particles with aerodynamic diameter of 10 μm or less (PM10) and meteorological observations are available from 13 stations distributed throughout Switzerland and representing different site types. The effect of all available meteorological variables on PM10 concentrations was estimated using Generalized Additive Models. Data from each season were treated separately. The most important variables affecting PM10 concentrations in winter, autumn and spring were wind gust, the precipitation rate of the previous day, the precipitation rate of the current day and the boundary layer depth. In summer, the most important variables were wind gust, Julian day and afternoon temperature. In addition, temperature was important in winter. A "weekend effect" was identified due to the selection of variable "day of the week" for some stations. Thursday contributes to an increase of 13% whereas Sunday contributes to a reduction of 12% of PM10 concentrations compared to Monday on average over 9 stations for the yearly data. The estimated effects of meteorological variables were removed from the measured PM10 values to obtain the PM10 variability and trends due to other factors and processes, mainly PM10 emissions and formation of secondary PM10 due to trace gas emissions. After applying this process, the PM10 variability was much lower, especially in winter where the ratio of adjusted over measured mean squared error was 0.27 on average over all considered sites. Moreover, PM10 trends in winter were more negative after the adjustment for meteorology and they ranged between −1.25 μg m−3 yr−1 and 0.07 μg m−3 yr−1. The adjusted trends for the other seasons ranged between −1.34 μg m−3 yr−1 and −0.26 μg m−3 yr−1 in spring, −1.40 μg m−3 yr−1 and −0.28 μg m−3 yr−1 in summer and −1.28 μg m−3 yr−1 and −0.11 μg m−3 yr−1 in autumn. The estimated trends of meteorologically adjusted PM10 were in general non-linear. The two urban street sites considered in the study, Bern and Lausanne, experienced the largest reduction in measured and adjusted PM10 concentrations. This indicates a verifiable effect of traffic emission reduction strategies implemented during the past two decades. The average adjusted yearly trends for rural, urban background and urban street stations were −0.37, −0.53 and −1.2 μg m−3 yr−1 respectively. The adjusted yearly trends for all stations range from −0.15 μg m−3 yr−1 to −1.2 μg m−3 yr−1 or −1.2% yr−1 to −3.3% yr−1.

Please read the corrigendum first before accessing the article.
Download & links
  • Notice on corrigendum

    The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

  • Article (1667 KB)
Publications Copernicus
Download
Notice on corrigendum

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Citation
Share