Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 11, issue 4 | Copyright
Atmos. Chem. Phys., 11, 1379-1392, 2011
https://doi.org/10.5194/acp-11-1379-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 Feb 2011

Research article | 16 Feb 2011

Sensitivity of stratospheric Bry to uncertainties in very short lived substance emissions and atmospheric transport

R. Schofield1, S. Fueglistaler2,*, I. Wohltmann1, and M. Rex1 R. Schofield et al.
  • 1Alfred Wegener Institute, Potsdam, Germany
  • 2Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
  • *now at: Department of Geosciences, Princeton University, New Jersey, USA

Abstract. We evaluate the sensitivity of Bry entering the stratosphere with a simplified model that allows calculations over a wide parameter range for parameters that are currently poorly quantified. The model examines the transport process uncertainties in the source concentrations and lifetimes, in the convective parameterization and in the inorganic bromine washout process due to dehydration. Source concentrations at the surface and lifetimes were found to have a slight effect on the resultant Bry (1 ppt), however this was highly dependent upon, with increasing significance, the BL component of convectively delivered air. Efficiency of convective delivery of boundary layer (BL) air to the tropical tropopause layer (TTL) along with washout at the CPT were found to substantially affect Bry at 400 K – altering the delivered Bry by 3.3 ppt and 2.9 ppt, respectively. We find that the results critically depend on free tropospheric bromine source gas concentrations due to dilution of convective updrafts, and the processes that control free tropospheric bromine source gas concentrations require further attention.

Download & links
Publications Copernicus
Download
Citation
Share