Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 11, issue 24
Atmos. Chem. Phys., 11, 12751–12771, 2011
https://doi.org/10.5194/acp-11-12751-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 11, 12751–12771, 2011
https://doi.org/10.5194/acp-11-12751-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 Dec 2011

Research article | 16 Dec 2011

Climatology and trends in the forcing of the stratospheric zonal-mean flow

E. Monier1 and B. C. Weare2 E. Monier and B. C. Weare
  • 1Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
  • 2Atmospheric Science Program, Department of Land, Air and Water Resources, University of California, Davis, Davis, California, USA

Abstract. The momentum budget of the Transformed Eulerian-Mean (TEM) equation is calculated using the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-40) and the National Centers for Environmental Prediction (NCEP) Reanalysis 2 (R-2). This study outlines the considerable contribution of unresolved waves, deduced to be gravity waves, to the forcing of the zonal-mean flow. A trend analysis, from 1980 to 2001, shows that the onset and break down of the Northern Hemisphere (NH) stratospheric polar night jet has a tendency to occur later in the season in the more recent years. This temporal shift follows long-term changes in planetary wave activity that are mainly due to synoptic waves, with a lag of one month. In the Southern Hemisphere (SH), the polar vortex shows a tendency to persist further into the SH summertime. This also follows a statistically significant decrease in the intensity of the stationary EP flux divergence over the 1980–2001 period. Ozone depletion is well known for strengthening the polar vortex through the thermal wind balance. However, the results of this work show that the SH polar vortex does not experience any significant long-term changes until the month of December, even though the intensification of the ozone hole occurs mainly between September and November. This study suggests that the decrease in planetary wave activity in November provides an important feedback to the zonal wind as it delays the breakdown of the polar vortex. In addition, the absence of strong eddy feedback before November explains the lack of significant trends in the polar vortex in the SH early spring. A long-term weakening in the Brewer-Dobson (B-D) circulation in the polar region is identified in the NH winter and early spring and during the SH late spring and is likely driven by the decrease in planetary wave activity previously mentioned. During the rest of the year, there are large discrepancies in the representation of the B-D circulation and the unresolved waves between the two reanalyses, making trend analyses unreliable.

Publications Copernicus
Download
Citation