Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 11, issue 23
Atmos. Chem. Phys., 11, 12217-12226, 2011
https://doi.org/10.5194/acp-11-12217-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Chemistry, microphysics and dynamics of the polar stratosphere:...

Atmos. Chem. Phys., 11, 12217-12226, 2011
https://doi.org/10.5194/acp-11-12217-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 07 Dec 2011

Research article | 07 Dec 2011

Stratospheric ozone chemistry in the Antarctic: what determines the lowest ozone values reached and their recovery?

J.-U. Grooß1, K. Brautzsch1, R. Pommrich3,2,1, S. Solomon4, and R. Müller1 J.-U. Grooß et al.
  • 1Institut für Energie- und Klimaforschung – Stratosphäre (IEK-7), Forschungszentrum Jülich, Jülich, Germany
  • 2Laboratoire d'Aérologie, CNRS/INSU, Université de Toulouse, Toulouse, France
  • 3Groupe d'étude de l'Atmosphère Météorologique, CNRM-GAME, Météo-France, Toulouse, France
  • 4Department of Atmospheric and Oceanic Science, University of Colorado, Boulder, CO, USA

Abstract. Balloon-borne observations of ozone from the South Pole Station have been reported to reach ozone mixing ratios below the detection limit of about 10 ppbv at the 70 hPa level by late September. After reaching a minimum, ozone mixing ratios increase to above 1 ppmv on the 70 hPa level by late December. While the basic mechanisms causing the ozone hole have been known for more than 20 yr, the detailed chemical processes determining how low the local concentration can fall, and how it recovers from the minimum have not been explored so far. Both of these aspects are investigated here by analysing results from the Chemical Lagrangian Model of the Stratosphere (CLaMS). As ozone falls below about 0.5 ppmv, a balance is maintained by gas phase production of both HCl and HOCl followed by heterogeneous reaction between these two compounds in these simulations. Thereafter, a very rapid, irreversible chlorine deactivation into HCl can occur, either when ozone drops to values low enough for gas phase HCl production to exceed chlorine activation processes or when temperatures increase above the polar stratospheric cloud (PSC) threshold. As a consequence, the timing and mixing ratio of the minimum ozone depends sensitively on model parameters, including the ozone initialisation. The subsequent ozone increase between October and December is linked mainly to photochemical ozone production, caused by oxygen photolysis and by the oxidation of carbon monoxide and methane.

Publications Copernicus
Special issue
Download
Citation
Share