Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 11, issue 23 | Copyright
Atmos. Chem. Phys., 11, 12169-12179, 2011
https://doi.org/10.5194/acp-11-12169-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 07 Dec 2011

Research article | 07 Dec 2011

ACE-FTS measurements of trace species in the characterization of biomass burning plumes

K. A. Tereszchuk1, G. González Abad1,4, C. Clerbaux2,3, D. Hurtmans3, P.-F. Coheur3, and P. F. Bernath1,5 K. A. Tereszchuk et al.
  • 1Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
  • 2UPMC Univ. Paris 06, Université Versailles St-Quentin, CNRS/INSU, LATMOS-IPSL, Paris, France
  • 3Spectroscopie de l'Atmosphère, Service de Chimie Quantique et de Photophysique, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
  • 4Harvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, Cambridge, MA 02138, USA
  • 5Department of Chemistry & Biochemistry, Old Dominion University, Norfolk, VA 23529-0126, USA

Abstract. To further our understanding of the effects of biomass burning emissions on atmospheric composition, we report measurements of trace species in biomass burning plumes made by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) instrument on the SCISAT-1 satellite. An extensive set of 15 molecules, C2H2, C2H6, CH3OH, CH4, CO, H2CO, HCN, HCOOH, HNO3, NO, NO2, N2O5, O3, OCS and SF6 are used in our analysis. Even though most biomass burning smoke is typically confined to the boundary layer, some of these emissions are injected directly into the free troposphere via fire-related convective processes and transported away from the emission source. Further knowledge of the aging of biomass burning emissions in the free troposphere is needed. Tracer-tracer correlations are made between known pyrogenic species in these plumes in an effort to characterize them and follow their chemical evolution. Criteria such as age and type of biomass material burned are considered.

Download & links
Publications Copernicus
Download
Citation
Share