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Species Concentration | Initial NO, .
e 1 . VOC,/NO, | concentration
oxidized in the Smog (ppb) (ppbC/ppb) | (molecule cm?)
Chamber PPOL/PP
n-Tridecanal ~250 ppb ~1700 2 ~1x10’
Pinonaldehyde ~300 ppb ~4000 0.8 ~0.5x10’
n-Pentadecane
Presto et al., 2to 9 ppb - 0.03-0.1 -
2010
2-Tridecanone ~40 ppb ~3500 0.15 ~0.5x10’
7-Tridecanone ~35 ppb ~3000 0.15 ~0.5x10’
n-Nonadecane ~2 ppb ~1800 0.02 ~0.5x10’
n- _ _ - 7
Heptadecanal 3 ppb 5000 0.01 1x10
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Figure A. a-Pinene and 1-octadecene were reacted (separately) with a flow of excess-ozone at -72° C to
form the primary ozonide. Dimethylsufide was used as a reducing agent to form the corresponding
dicarbonyl. A bicarbonante solution was used to extract the carboxylic acids formed and other water
soluble impurities. The procedure followed was the one by McMurry et al. (1987).
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Figure B. "4 NMR spectra were taken from the synthesized-pinonaldehyde sample in order to assess its
purity level. Pinonaldehyde composed approximately ~85% of the sample, including the cis- and trans-
isomers. Other minor species like peroxides were found. No acids were encountered. The biggest
impurity was dimethyl sulfoxide (DMSO, at ~3.6 ppm). The signal at approximately 7.2 ppm corresponds
to CDCl;, wich was the solvent used when the NMR spectra were taken.
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Figure C. This is a Heteronuclear Single Quantum Coherence (HSQC) spectra of the synthesized-
pinonaldehyde sample that gives a strong suggestion of the abundance of the pinonadehyde
structure. There is an excellent connection between the *C NMR and the *H NMR which shows
pinonaldehyde as the most abundant species in the sample.

Supplementary Data



Chacon-Madrid and Donahue

= d
] d b
Ch (CH,) CH, 0
] e 2\14 PN
1 HsC CH, CH
| e c a
'ﬂ—— CH €
T HC—S/ 3
- TN b
i a 9 U
] CDCI
. ~° m 1
U N
w8 & 4 a7 6 mpm

Figure D. This 'H NMR spectra shows the presence of n-heptadecanal as the major product (>90%). The
major contaminant is DMSO at ~3.3 ppm. CDCl; was the solvent used when the NMR spectra were
taken, reason for a peak at ~7.2 ppm. Other than DMSO, contaminants such as peroxides are observed
in minor concentrations.
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Figure E. This is an HSQC spectra of the synthesized-n-heptadecanal sample. This spectra strongly
suggests abundance of n-heptadecanal in the sample. There is an excellent connection
between the *C NMR and the 'H NMR, describing n-heptadecanal as the most abundant
species in the sample.
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Figure F. Reaction mechanism of n-aldehyde + OH radical in the presence of high NO,. The first
branching point in the reaction mechanism (shown in blue) is the peroxyacyl radical (PAR) becoming
either a peroxyacyl nitrate (PAN) or an alkoxyacyl radical (AAR). The alkoxyacyl radical will fragment and
form a C,; alkyl radical that will eventually branch between a C,; alkyl nitrate and a C,; alkoxy radical.
This alkoxy radical branches (arrows in green) between the C,.; aldehyde and an isomerization structure.
Long straight-chain aldehydes have a preference towards isomerization in this last step.
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Figure G. Fragmentation of 7-tridecanone via OH radical oxidation in the presence of NO, forms n-
hexanal. The signals presented here have not been calibrated. n-Hexanal can be formed from attack on

the a- and B-hydrogens of 7-tridecanone (refer to Figure 7, main manuscript).
tridecanone with OH in the presence of NO, does not show the formation of its respective aldehyde.
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That is because chemical fragmentation is a smaller path for 2-tridecanone versus 7-tridecanone.
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