Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 11, issue 20 | Copyright

Special issue: DOMINO: the Diel Oxidant Mechanisms in relation to Nitrogen...

Atmos. Chem. Phys., 11, 10433-10447, 2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 20 Oct 2011

Research article | 20 Oct 2011

Quantification of the unknown HONO daytime source and its relation to NO2

M. Sörgel1,2, E. Regelin3, H. Bozem3,*, J.-M. Diesch4, F. Drewnick4, H. Fischer3, H. Harder3, A. Held2, Z. Hosaynali-Beygi3, M. Martinez3, and C. Zetzsch1,5 M. Sörgel et al.
  • 1University of Bayreuth, Atmospheric Chemistry Research Laboratory, Bayreuth, Germany
  • 2University of Bayreuth, Junior Professorship in Atmospheric Chemistry, Bayreuth, Germany
  • 3Max Planck Institute for Chemistry, Atmospheric Chemistry Department, P.O. Box 3060, 55020 Mainz, Germany
  • 4Max Planck Institute for Chemistry, Particle Chemistry Department, P.O. Box 3060, 55020 Mainz, Germany
  • 5Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
  • *now at: University Mainz, Institute for Atmospheric Physics, Mainz, Germany

Abstract. During the DOMINO (Diel Oxidant Mechanism In relation to Nitrogen Oxides) campaign in southwest Spain we measured simultaneously all quantities necessary to calculate a photostationary state for HONO in the gas phase. These quantities comprise the concentrations of OH, NO, and HONO and the photolysis frequency of NO2, j(NO2) as a proxy for j(HONO). This allowed us to calculate values of the unknown HONO daytime source. This unknown HONO source, normalized by NO2 mixing ratios and expressed as a conversion frequency (% h−1), showed a clear dependence on j(NO2) with values up to 43% h−1 at noon. We compared our unknown HONO source with values calculated from the measured field data for two recently proposed processes, the light-induced NO2 conversion on soot surfaces and the reaction of electronically excited NO2* with water vapour, with the result that these two reactions normally contributed less than 10% (<1% NO2 + soot + hν; and <10% NO2* + H2O) to our unknown HONO daytime source. OH production from HONO photolysis was found to be larger (by 20%) than the "classical" OH formation from ozone photolysis (O(1D)) integrated over the day.

Download & links
Publications Copernicus
Special issue