Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 11, issue 1
Atmos. Chem. Phys., 11, 103-120, 2011
https://doi.org/10.5194/acp-11-103-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 11, 103-120, 2011
https://doi.org/10.5194/acp-11-103-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

  05 Jan 2011

05 Jan 2011

Downslope windstorm in Iceland – WRF/MM5 model comparison

Ó. Rögnvaldsson1,2, J.-W. Bao3, H. Ágústsson1,4, and H. Ólafsson4,5,* Ó. Rögnvaldsson et al.
  • 1Institute for Meteorological Research, Reykjavík, Iceland
  • 2University of Bergen – UiB, Bergen, Norway
  • 3NOAA/ESRL, Boulder, USA
  • 4University of Iceland, Reykjavík, Iceland
  • 5Icelandic Meteorological Office, Reykjavík, Iceland
  • *now at: Bergen school of meteorology, Geophysical Institute UiB, Norway

Abstract. A severe windstorm downstream of Mt. Öræfajökull in Southeast Iceland is simulated on a grid of 1 km horizontal resolution by using the PSU/NCAR MM5 model and the Advanced Research WRF model. Both models are run with a new, two equation planetary boundary layer (PBL) scheme as well as the ETA/MYJ PBL schemes. The storm is also simulated using six different micro-physics schemes in combination with the MYJ PBL scheme in WRF, as well as one "dry" run. Output from a 3 km MM5 domain simulation is used to initialise and drive both the 1 km MM5 and WRF simulations. Both models capture gravity-wave breaking over Mt. Öræfajökull, while the vertical structure of the lee wave differs between the two models and the PBL schemes. The WRF simulated downslope winds, using both the MYJ and 2EQ PBL schemes, are in good agreement with the strength of the observed downslope windstorm. The MM5 simulated surface winds, with the new two equation model, are in better agreement to observations than when using the ETA scheme. Micro-physics processes are shown to play an important role in the formation of downslope windstorms and a correctly simulated moisture distribution is decisive for a successful windstorm prediction. Of the micro-physics schemes tested, only the Thompson scheme captures the downslope windstorm.

Publications Copernicus
Download
Citation
Share