Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 10, issue 20 | Copyright
Atmos. Chem. Phys., 10, 9819-9831, 2010
https://doi.org/10.5194/acp-10-9819-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

  19 Oct 2010

19 Oct 2010

Direct and semi-direct impacts of absorbing biomass burning aerosol on the climate of southern Africa: a Geophysical Fluid Dynamics Laboratory GCM sensitivity study

C. A. Randles1,* and V. Ramaswamy1,2 C. A. Randles and V. Ramaswamy
  • 1Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey, USA
  • 2NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA
  • *now at: Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County and NASA GSFC Code 613.3, Greenbelt, Maryland, USA

Abstract. Tropospheric aerosols emitted from biomass burning reduce solar radiation at the surface and locally heat the atmosphere. Equilibrium simulations using an atmospheric general circulation model (GFDL AGCM) indicate that strong atmospheric absorption from these particles can cool the surface and increase upward motion and low-level convergence over southern Africa during the dry season. These changes increase sea level pressure over land in the biomass burning region and spin-up the hydrologic cycle by increasing clouds, atmospheric water vapor, and, to a lesser extent, precipitation. Cloud increases serve to reinforce the surface radiative cooling tendency of the aerosol. Conversely, if the climate over southern Africa were hypothetically forced by high loadings of scattering aerosol, then the change in the low-level circulation and increased subsidence would serve to decrease clouds, precipitation, and atmospheric water vapor. Surface cooling associated with scattering-only aerosols is mitigated by warming from cloud decreases. The direct and semi-direct climate impacts of biomass burning aerosol over southern Africa are sensitive to the total amount of aerosol absorption and how clouds change in response to the aerosol-induced heating of the atmosphere.

Download & links
Publications Copernicus
Download
Citation
Share