Articles | Volume 10, issue 19
https://doi.org/10.5194/acp-10-9647-2010
https://doi.org/10.5194/acp-10-9647-2010
11 Oct 2010
 | 11 Oct 2010

Will climate change increase ozone depletion from low-energy-electron precipitation?

A. J. G. Baumgaertner, P. Jöckel, M. Dameris, and P. J. Crutzen

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
The historical ozone trends simulated with the SOCOLv4 and their comparison with observations and reanalyses
Arseniy Karagodin-Doyennel, Eugene Rozanov, Timofei Sukhodolov, Tatiana Egorova, Jan Sedlacek, William Ball, and Thomas Peter
Atmos. Chem. Phys., 22, 15333–15350, https://doi.org/10.5194/acp-22-15333-2022,https://doi.org/10.5194/acp-22-15333-2022, 2022
Short summary
Indicators of the ozone recovery for selected sites in the Northern Hemisphere mid-latitudes derived from various total column ozone datasets (1980–2020)
Janusz Krzyścin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-680,https://doi.org/10.5194/acp-2022-680, 2022
Revised manuscript accepted for ACP
Short summary
Atmospheric impacts of chlorinated very short-lived substances over the recent past – Part 1: Stratospheric chlorine budget and the role of transport
Ewa M. Bednarz, Ryan Hossaini, Martyn P. Chipperfield, N. Luke Abraham, and Peter Braesicke
Atmos. Chem. Phys., 22, 10657–10676, https://doi.org/10.5194/acp-22-10657-2022,https://doi.org/10.5194/acp-22-10657-2022, 2022
Short summary
Effects of reanalysis forcing fields on ozone trends and age of air from a chemical transport model
Yajuan Li, Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Andreas Chrysanthou, Yuan Xia, and Dong Guo
Atmos. Chem. Phys., 22, 10635–10656, https://doi.org/10.5194/acp-22-10635-2022,https://doi.org/10.5194/acp-22-10635-2022, 2022
Short summary
The influence of energetic particle precipitation on Antarctic stratospheric chlorine and ozone over the 20th century
Ville Maliniemi, Pavle Arsenovic, Annika Seppälä, and Hilde Nesse Tyssøy
Atmos. Chem. Phys., 22, 8137–8149, https://doi.org/10.5194/acp-22-8137-2022,https://doi.org/10.5194/acp-22-8137-2022, 2022
Short summary

Cited articles

Barnett, J. J., Houghton, J. T., and Pyle, J. A.: The temperature dependence of the ozone concentration near the stratopause, Q. J. Roy. Meteor. Soc., 101, 245–257, https://doi.org/10.1002/qj.49710142808, 1975.
Baumgaertner, A. J. G., McDonald, A. J., Fraser, G. J., and Plank, G. E.: Long-term observations of mean winds and tides in the upper mesosphere and lower thermosphere above Scott Base, Antarctica, J. Atmos. Sol-Terr. Phy., 67, 1480–1496, https://doi.org/10.1016/j.jastp.2005.07.018, 2005.
Baumgaertner, A. J. G., J{ö}ckel, P., and Br{ü}hl, C.: Energetic particle precipitation in ECHAM5/MESSy1 – Part 1: Downward transport of upper atmospheric NOx produced by low energy electrons, Atmos. Chem. Phys., 9, 2729–2740, https://doi.org/10.5194/acp-9-2729-2009, 2009.
Brasseur, G. P. and Solomon, S.: Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, Springer, third edn., 2005.
Br{ü}hl, C., Steil, B., Stiller, G., Funke, B., and J{ö}ckel, P.: Nitrogen compounds and ozone in the stratosphere: comparison of MIPAS satellite data with the chemistry climate model ECHAM5/MESSy1, Atmos. Chem. Phys., 7, 5585–5598, https://doi.org/10.5194/acp-7-5585-2007, 2007.
Download
Altmetrics
Final-revised paper
Preprint