Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 10, issue 19
Atmos. Chem. Phys., 10, 9333–9349, 2010
https://doi.org/10.5194/acp-10-9333-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: European Integrated Project on Aerosol-Cloud-Climate and Air...

Atmos. Chem. Phys., 10, 9333–9349, 2010
https://doi.org/10.5194/acp-10-9333-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

  05 Oct 2010

05 Oct 2010

New particle formation and ultrafine charged aerosol climatology at a high altitude site in the Alps (Jungfraujoch, 3580 m a.s.l., Switzerland)

J. Boulon1, K. Sellegri1, H. Venzac1,*, D. Picard1, E. Weingartner2, G. Wehrle2, M. Collaud Coen3, R. Bütikofer4, E. Flückiger4, U. Baltensperger2, and P. Laj5 J. Boulon et al.
  • 1Laboratoire de Météorologie Physique CNRS UMR 6016, Observatoire de Physique du Globe de Clermont-Ferrand, Université Blaise Pascal, Clermont-Ferrand, France
  • 2Paul Scherrer Institut, Villigen, PSI, Switzerland
  • 3MeteoSwiss, Aerological Station, Payerne, Switzerland
  • 4Physikalisches Institut, Universität Bern, Bern, Switzerland
  • 5Laboratoire de Glaciologie et Géophysique de l'Environnement, CNRS UMR5183, Université Joseph Frourier Grenoble 1, Saint Martin d'Héres, France
  • *now at: Weather Measures, Aubière, France

Abstract. We investigate the formation and growth of charged aerosols clusters at Jungfraujoch, in the Swiss Alps (3580 m a.s.l.), the highest altitude site of the European EUCAARI project intensive campaign. Charged particles and clusters (0.5–1.8 nm) were measured from April 2008 to April 2009 and allowed the detection of nucleation events in this very specific environment (presence of free tropospheric air and clouds). We found that the naturally charged aerosol concentrations, which are dominated by the cluster size class, shows a strong diurnal pattern likely linked to valley breezes transporting surface layer ion precursors, presumably radon. Cosmic rays were found not to be the major ion source at the measurement site. However, at night, when air masses are more representative of free tropospheric conditions, we found that the cluster concentrations are still high. The charged aerosol size distribution and concentration are strongly influenced by the presence of clouds at the station. Clouds should be taken into account when deriving high altitude nucleation statistics. New particle formation occurs on average 17.5% of the measurement period and shows a weak seasonality with a minimum of frequency during winter, but this seasonality is enhanced when the data set is screened for periods when the atmospheric station is out of clouds. The role of ions in the nucleation process was investigated and we found that the ion-mediated nucleation explains 22.3% of the particle formation. The NPF events frequency is correlated with UV radiation but not with calculated H2SO4 concentrations, suggesting that other compounds such as organic vapors are involved in the nucleation and subsequently growth process. In fact, NPF events frequency also surprisingly increases with the condensational sink (CS), suggesting that at Jungfraujoch, the presence of condensing vapours probably coupled with high CS are driving the occurrence of NPF events. A strong link to the air mass path was also pointed out and events were observed to be frequently occurring in Eastern European air masses, which present the highest condensational sink. In these air masses, pre-existing cluster concentrations are more than three time larger than in other air masses during event days, and no new clusters formation is observed, contrarily to what is happening in other air mass types.

Publications Copernicus
Download
Citation