Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 10, issue 15
Atmos. Chem. Phys., 10, 7439-7456, 2010
https://doi.org/10.5194/acp-10-7439-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 10, 7439-7456, 2010
https://doi.org/10.5194/acp-10-7439-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

  10 Aug 2010

10 Aug 2010

A global modeling study on carbonaceous aerosol microphysical characteristics and radiative effects

S. E. Bauer1,2, S. Menon3, D. Koch1,2, T. C. Bond4, and K. Tsigaridis1 S. E. Bauer et al.
  • 1NASA Goddard Institute for Space Studies, New York, NY, USA
  • 2The Earth Institute, Columbia University, New York, NY, USA
  • 3Lawrence Berkeley National Laboratory, Berkeley, CA, USA
  • 4University of Illinois, Urbana-Champaign, IL, USA

Abstract. Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects.

Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is −0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between −0.32 to −0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

Publications Copernicus
Download
Citation
Share