The production and persistence of ΣRONO$_2$ in the Mexico City plume

A. E. Perring1, T. H. Bertram1, D. K. Farmer1, P. J. Wooldridge1, J. Dibb2, N. J. Blake3, D. R. Blake3, H. B. Singh4, H. Fuelberg5, G. Diskin6, G. Sachse6, and R. C. Cohen1

1Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
2Climate Change Research Institute, University of New Hampshire, Durham, NH, USA
3Department of Chemistry, University of California Irvine, Irvine, CA, USA
4NASA Ames Research Center, Moffett Field, CA, USA
5Department of Meteorology, Florida State University, Tallahassee, FL, USA
6NASA Langley Research Center, Hampton, VA, USA
7Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, CA, USA

*now at: Chemical Sciences Division, Earth Systems Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
**now at: Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
***now at: Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA

Received: 8 October 2009 – Published in Atmos. Chem. Phys. Discuss.: 11 November 2009
Revised: 12 June 2010 – Accepted: 5 July 2010 – Published: 6 August 2010

Abstract. Alkyl and multifunctional nitrates (RONO$_2$, ΣANs) have been observed to be a significant fraction of NO$_y$ in a number of different chemical regimes. Their formation is an important free radical chain termination step ending production of ozone and possibly affecting formation of secondary organic aerosol. ΣANs also represent a potentially large, unmeasured contribution to OH reactivity and are a major pathway for the removal of nitrogen oxides from the atmosphere. Numerous studies have investigated the role of nitrate formation from biogenic compounds and in the remote atmosphere. Less attention has been paid to the role ΣANs may play in the complex mixtures of hydrocarbons typical of urban settings. Measurements of total alkyl and multifunctional nitrates, NO$_2$, total peroxy nitrates (ΣPNs), HNO$_3$ and a representative suite of hydrocarbons were obtained from the NASA DC-8 aircraft during spring of 2006 in and around Mexico City and the Gulf of Mexico. ΣANs were observed to be 10–20% of NO$_y$ in the Mexico City plume and to increase in importance with increased photochemical age. We describe three conclusions: (1) Correlations of ΣANs with odd-oxygen (O$_3$) indicate a stronger role for ΣANs in the photochemistry of Mexico City than is expected based on currently accepted photochemical mechanisms. (2) ΣAN formation suppresses peak ozone production rates by as much as 40% in the near-field of Mexico City and (3) ΣANs play a significant role in the export of NO$_y$ from Mexico City to the Gulf Region.

1 Introduction

The chemistry of alkyl and multifunctional nitrates acts to suppress O$_3$ formation in the near field of urban plumes and then to extend the range of ozone formation in the far field by releasing NO$_x$ in locations far from NO$_x$ emissions (e.g. Ito et al., 2007). However, there are few detailed observational tests capable of assessing the quantitative importance of these effects and current models incorporate contradictory assumptions about elements of the chemistry that are not well constrained by lab or by field observations. Recent analyses of models and their differences (Wu et al., 2007; Ito et al., 2007), field observations (Giacopelli et al., 2005; Farmer and Cohen, 2007; Horowitz et al., 2007; Perring et al., 2009a) and laboratory measurements (e.g. Paulot et al., 2009) have focused attention on the extent to which RONO$_2$ molecules preserve the −ONO$_2$ functional group upon oxidation. An emerging theme from these papers is that the lifetime of total RONO$_2$ (denoted ΣANs hereafter), rather
than the lifetime of any individual RONO$_2$ molecule, is the key to understanding the effects of RONO$_2$ formation on atmospheric chemistry.

ΣANs have been observed to be a significant fraction of NO$_x$ in a number of different chemical regimes (Day et al., 2003; Rosen et al., 2004; Cleary et al., 2005; Perring et al., 2009a) and have been inferred to be an important photochemical product in Mexico City with potential concentrations of several ppb (Dunlea et al., 2007). Here we present observations of ΣANs, measured by thermal dissociation coupled to laser-induced fluorescence detection of NO$_2$ (Thornton et al., 2000; Day et al., 2002), in and downwind of Mexico City using the NASA DC-8 platform during the Megacity Initiative: Local and Global Research Observations (MILAGRO) phase of the INTEX-B campaign in the spring of 2006 (Singh et al., 2009; Molina et al., 2010). The aircraft flights targeted plume evolution and crossed the Mexico City plume at its origin and at distances as far as 1000 km downwind. We use these observations to explore the role of ΣANs as they affect ozone and nitrogen oxides. We show that ΣAN chemistry has important consequences for urban O$_3$, for regional photochemistry and for the evolution of O$_3$ in the Mexico City plume. We examine aspects of the chemistry that are specific to this plume. We investigate the progression of the NO$_x$ distribution as the plume ages with special attention to the continued significance of ΣANs as a fraction of NO$_x$.

2 Measurements

Observations described here were made aboard the NASA DC-8 during the Intercontinental Transport Experiment-Phase B (INTEX-B), which took place in the spring of 2006. INTEX-B, a NASA-led multi-partner atmospheric chemistry campaign, has been described elsewhere (Singh et al., 2009). One of the stated goals was to investigate the extent and persistence of Mexican pollution outflow as part of the MILAGRO campaign (Molina et al., 2010).

NO$_2$, ΣPNs, and ΣANs were measured using the Berkeley thermal dissociation-laser induced fluorescence instrument (Thornton et al., 2000; Day et al., 2002). Briefly, gas is pulled simultaneously through four channels consisting of heated quartz tubes maintained at specific temperatures for the dissociation of each compound class above. Each heated section is followed by a length of PFA tubing leading to a detection cell where NO$_2$ is measured using laser-induced fluorescence. Due to differing X-NO$_2$ bond strengths, ΣPNs, ΣANs and HNO$_3$ all thermally dissociate to NO$_2$ and a companion radical at a characteristic temperature. The ambient channel measures NO$_2$ alone, the second channel (180 °C) measures NO$_2$ produced from the dissociation of ΣPNs in addition to ambient NO$_2$ so the observed signal is NO$_2$+ΣPNs, the third channel (380 °C) measures NO$_2$+ΣPNs+ΣANs, and the last channel (580 °C) measures NO$_2$+ΣPNs+ΣANs+HNO$_3$. Concentrations of each class of compound correspond to the difference in NO$_2$ signal between two channels set at adjacent temperatures. The difference in NO$_2$ signal between the 180 °C and the 380 °C channel, for example, is the ΣANs mixing ratio. The instrument deployed for INTEX-B had a heated inlet tip that split in two immediately. Half of the flow was immediately introduced to heated quartz tubes for detection of ΣANs and HNO$_3$ while the other half was introduced to an additional heated quartz tube for detection of ΣPNs and an ambient temperature channel for detection of NO$_2$.

Ambient NO$_2$ and NO$_2$ produced by thermal dissociation was observed by laser-induced fluorescence as described in detail by Thornton et al. (2000). Briefly, a tunable dye laser is pumped at 7 kHz by a Q-switched, frequency doubled Nd$^3+$YAG laser. The incoming gas is cooled through the use of a supersonic expansion (Cleary et al., 2002) and the dye laser, utilizing Pyrromethene 597 in isopropanol, is tuned to an isolated rovibronic feature of jet-cooled NO$_2$ at 585 nm. The frequency is held for 20 s at the peak of this feature and then for 5 s at an offline position in the continuum absorption. The ratio of peak to off-resonance fluorescence of the chosen feature is 10:1 at 1 atm and the difference between the two signals is directly proportional to the NO$_2$ mixing ratio. The laser light is focused in series through two multi-pass (White) cells (discussed in more detail below) and the red-shifted fluorescence is detected using a red-sensitive photomultiplier tube (Hamamatsu). Fluorescence counts are collected at 5 Hz, scattered light at wavelength less than 700 nm is rejected by band-pass filters and time-gated detection is used to eliminate noise resulting from scattered laser light in the cell. We observe a dependence of NO$_2$ fluorescence on the external pressure. We calibrate the NO$_2$ LIF vs. altitude by direct measurement of NO$_2$ from a standard addition during a test-flight. Calibrations were performed at least once every two hours during a level flight leg using a 4.7 ppm NO$_2$ reference gas (Praxair) with a stated certainty of ±5%. The reference gas was compared to a library of standards in lab both before and after the campaign. The individual standards are compared on a regular basis (about every 6 months) to ensure stability and highlight when a given tank has degraded. These standards have been observed to remain stable for up to 5 years and to be accurate at atmospherically relevant mixing ratios to within 1% (Bertram et al., 2005).

The instrument deployed for INTEX-B had two detection cells. The direction of flow into the cell was controlled using a three-way valve and a bypass pump was used to maintain flow in the non-sampled channel. Cell 1 sampled either the ambient (75% of the time) or the 380 °C channel (25% of the time) while cell 2 sampled either the 180 °C (50% of the time) or the 580 °C channel (50% of the time). Thus for every 2 min duty cycle there were three 20 s average measurements of NO$_2$, two 20 s average measurements of ΣPNs, one 20 s average measurement of ΣANs, one 20 s average measurement of HNO$_3$ and one 20 s average measurement of the
sum (ΣPNs+ΣANs+HNO$_3$). As the ΣANs measurement is a subtraction, the uncertainty depends both on ΣANs and on the sum (NO$_2$+ΣPNs). For example, if there were 100 ppt each of NO$_2$ and ΣPNs, the precision of the ΣANs measurement would be \sim15 ppt in 20 s for $S/N$$\approx$2 at typical laser power and cell alignment. If there were 1 ppb each of NO$_2$ and ΣPNs the precision of the ΣANs would be 40 ppt.

We expect to detect both gas and aerosol phase organic nitrates with the TD-LIF instrument because the analogous TD-LIF measurement of HNO$_3$ has been shown to be the sum of aerosol and gas-phase HNO$_3$ (Fountoukis et al., 2009). While a direct intercomparison of the ΣANs measurement has not been published, we have sampled pure standards of ethyl nitrate, propyl nitrate and isoprene nitrates (synthesized by wet chemical methods in the laboratory) in air. In each case we observe signal only in the ΣANs channel of the TD-LIF indicating that the nitrates are not dissociating in the other temperature channels. Comparison of TD-LIF observations of an isoprene nitrate standard to observations made using a PTR-MS show both instruments to be consistent to within 10% (Perring et al., 2009b). Comparisons of NO$_2$ and ΣPNs have also been described and indicate similar or better accuracy for these species (Thornton et al., 2003; Fuchs et al., 2010; Wooldridge et al., 2010).

For the present analysis, we use the HNO$_3$ measurement made by the University of New Hampshire with a mist chamber followed by ion chromatography (Scheuer et al., 2003; Dibb et al., 2006). This measurement represents the sum of gas-phase HNO$_3$ and fine (submicron) aerosol nitrate, Hydrocarbons and C$_1$–C$_5$ alkyl nitrates were measured by UC Irvine using gas chromatography of whole air samples (Colman et al., 2001). Oxygenated volatile organic carbon species (methyl-ethyl-ketone, methanol, ethanol, acetaldehyde collectively referred to, when combined with CH$_2$O, as oxidized volatile organic carbon or OVOC) were measured by NASA Ames using gas chromatography (Singh et al., 1999). NO (Georgia Tech) and O$_3$ (NASA Langley) were measured through chemiluminescence. OH and HO$_2$ were measured by laser-induced fluorescence by Penn State (Faloona et al., 2004). CH$_2$O was measured by NCAR using tunable diode laser absorption spectroscopy (TDLAS) (Fried et al., 2003) and by the University of Rhode Island (URI) using an enzyme-derivatization fluorescence technique following collection in an aqueous medium and high performance liquid chromatographic analysis (Heikes, 1992). There is an unresolved \sim18% discrepancy between the two measurements so we have used an average of the two in the present analysis. URI also employed the enzyme-derivatization fluorescence technique to measure hydrogen peroxide (H$_2$O$_2$). CO was measured by differential absorption as described by Sachse et al. (1987). NO$_3$ was not measured explicitly but for the purposes of this manuscript we consider it to be the sum of all measured reactive nitrogen species (NO, NO$_2$, ΣPNs, ΣANs and HNO$_3$). Photolysis frequencies are calculated from spectroradiometer measurements as described by Shetter and Muller (1999). Ten-day back trajectories from locations of the DC-8 were calculated using the National Weather Service’s Global Forecast Model (GFS) analyses of basic parameters as described by Fuelberg et al. (2007). The GFS data were available at 6 h intervals on a 1° latitude/longitude grid at 64 vertical levels.

The present work uses data from a 1-min merge available at http://www-air.larc.nasa.gov/missions/intex-b/intexb.html. We use back trajectories provided with the merged chemical data to select measured air masses that passed within \sim160 km (1.5°) of the T0 site in the center of Mexico City at pressures higher than 680 mbar. The elevation of Mexico City is 2240 m and typical surface pressure is \sim770 mbar. 680 mbar corresponds to an elevation of about 1 km a.g.l. (above ground level). Considering the 6 local flights out of Houston, there are a total of 2591 trajectories and, of those, 422 satisfy our criteria of having passed through the boundary layer in the vicinity of the Mexico City Metropolitan Area (MCMA).

3 Results and analysis

The formation of alkyl and multifunctional nitrates (ΣRONO$_2$ = ΣANs) occurs as a result of reactions between organic peroxy radicals (RO$_2$) and NO (Reaction R1a). The alternative to alkyl nitration formation is propagation of the radical chain of events, conversion of NO to NO$_2$, and subsequent ozone production (Reaction R1b).

\[
\begin{align*}
\text{RO}_2 + \text{NO} & \rightarrow \text{RONO}_2 \quad (\text{R1a}) \\
\text{RO}_2 + \text{NO} & \rightarrow \text{RO} + \text{NO}_2 \quad (\text{R1b})
\end{align*}
\]

The ratio $k_{1a}/(k_{1a}+k_{1b})$ is α, the nitrate branching ratio. In this analysis, we examine the concentration of ΣANs and the fraction of NO$_3$ that is represented by ΣANs as a function of time since emission of NO$_x$ and VOC at the point of origin in downtown Mexico City. We discuss the evolving relationship between ΣANs and O$_3$ Sect. 3.1 we develop a measure of airmass age. In Sect. 3.2 we describe the temporal evolution of NO$_3$ partitioning in the plume, in Sect. 3.3 we describe the temporal evolution of the correlation of ΣAN with O$_3$ in the plume.

3.1 Photochemical age

We use the ratio of 2-butyl nitrate (CH$_3$CH(NO$_2$)CH$_2$CH$_3$) to butane, an indicator of time since last anthropogenic influence, to sort the MCMA plume points by increasing photochemical age. This indicator of age has been discussed previously by Bertman et al. (1995). Photochemical age indicators depend on the assumption that parent and daughter molecules, in this case a particular straight-chain alkane and its daughter alkyl nitrate arise exclusively from a single chemical reaction (or a chain with the well-defined rate limiting step) and that the loss processes of the daughter are
slower than the parent and well known. In addition, this analysis assumes that the emissions are effectively from a single isolated point source (LaFranchi et al., 2009). Depending on the accuracy required, mixing of a background into the plume must also be taken into account (Day et al., 2003). Neglecting mixing into a constant background doesn’t affect the time ordering of the age indicator but does make its absolute magnitude less accurate.

In this case we choose butane and 2-butyl nitrate as the parent-daughter pair. Ages calculated using ratios of 2- and 3-pentyl nitrate to pentane give similar results. Neglecting mixing, and assuming that every RO$_2$ formed reacts with NO, the change in the concentration of a nitrate over time is then:

$$\frac{d[RONO_2]}{dt} = \alpha k_A[RH] - k_B[RONO_2]$$ \hspace{1cm} (1)

where α is the nitrate branching ratio, $k_A = k_{OH+RH} [OH]$ and $k_B = k_{OH+RONO_2} [OH] + J_{RONO_2}$. The parameters for butane and 2-butyl nitrate are taken from Bertman et al. (1997): $k_{OH+Butane} = 2.54 \times 10^{-12}$ cm3/molecule/s, $k_{OH+2ButylNitrate} = 9.2 \times 10^{-13}$ cm3/molecule/s, $\alpha = 0.077$ and $J_{2ButylNitrate} = 1.1 \times 10^{-6}$ s$^{-1}$. For the present calculation we have assumed $OH = 3 \times 10^6$ molecules/cm3, a reasonable daytime average concentration for the core of the Mexico City urban plume. Dusanter et al. (2009) report midday OH concentrations of 7–8×10^6 molecules/cm3 in downtown Mexico City and median concentrations observed aboard the DC8 for back trajectories tracing to Mexico City ranged from $\sim 8 \times 10^6$ molecules/cm3 within the Mexico City Basin to $\sim 4 \times 10^6$ molecules/cm3 over the Gulf of Mexico.

The above equation integrates to:

$$\frac{[RONO_2]}{[RH]} = \frac{\alpha k_A}{(k_A - k_B)} \left(1 - e^{(k_A - k_B)t} \right) \hspace{1cm} (2)$$

If we assume $[RONO_2]_0 = 0$ and solve for t we find:

$$t = \frac{\ln \left(1 - \frac{[RONO_2]}{[RH]} \cdot \frac{\alpha k_A}{k_A - k_B} \right)}{(k_A - k_B)} \hspace{1cm} (3)$$

Bertman et al. (1995) showed that these assumptions were adequate for evolving airmasses observed at Scotia Pennsylvania and the Kinterbish Wildlife Area, Alabama when applied to nitrates derived from hydrocarbons larger than propane.

Figure 1 shows the distance from T0 (panel a), the observed ratio of 2-butyl nitrate to butane (panel b), the age calculated from the 2-butyl nitrate to butane ratio (panel c) and the observed NO$_x$ to HNO$_3$ ratio (panel d) from a segment of the DC8’s flight of 16 March 2006. The NO$_x$ to HNO$_3$ ratio, which has also been widely employed as an indicator of photochemical processing, is expected to decrease with increased age as long as oxidation of NO$_2$ is more rapid than...
deposition of HNO$_3$. Figure 2 shows the calculated age of all points that have back trajectories that trace back to Mexico City and Fig. 3 shows the relationship between the calculated age for these points and the distance to the T0 site in downtown Mexico City. Although we use a single value for OH in these calculations, it should also be noted that the rate of photochemical aging slows as the plume becomes more dilute and the OH concentration decreases. The OH concentration drops by more than a factor of 2 between the center of Mexico City and the Gulf of Mexico and this drives the shape of the curve shown in Fig. 3.

Much of the spread in the relationship between photochemical age and distance to the T0 site can be explained by variation in wind velocity. For example, the average measured wind velocity below 4 km altitude (where most of the plume sampling occurred) on 16 March was \sim5.5 m/s (blue points) while that on 19 March was \sim10 m/s (red points). The higher wind velocity on 19 March carried the airmass farther from the source at equivalent photochemical aging than the mean. Note that the choice of OH concentration of 3×10^6 molecules/cm3 gives photochemical ages in the first two days of plume evolution that are similar to the transport times calculated from observed wind speeds; i.e. on the day with a windspeed of 5.5 m/s the calculated photochemical age of the points near 1000 km is \sim45 h while the transport time would be \sim50 h. Additional spread in the transport time-photochemical time relationship is also introduced as a result of using a photochemical clock that turns off at night.

3.2 NO$_y$ speciation in the Mexico City Plume

Figure 4a shows concentrations of the components of NO$_y$ as a function of photochemical age and 4b shows NO$_y$ speciation as a function of photochemical age. Near Mexico City (time < 6 h) NO$_x$ is \sim3.5 ppb and the dominant component of NO$_y$. Within 200 km (by \sim20 h) NO$_x$ decreases to $<$25% of NO$_y$ and at the longest time considered (130 h) NO$_x$ is 15% of NO$_y$, comparable to ΣPNs and ΣANs. HNO$_3$ is a minor fraction of NO$_y$ (10%) close to Mexico City and increases to \sim60% at the longest times.

The concentration of ΣPNs peaks at \sim8 h and ΣPNs as a fraction of NO$_y$ peak at \sim15 h (100 km) where they account for 30% of NO$_y$ after which they decrease to about \sim15% of NO$_y$ at \sim40 h. Qualitatively this is the expected pattern. Previous analyses have shown that net production of peroxy nitrates occurs in the near-field of source regions where concentrations of NO$_2$ and RO$_2$ are high and the formation rate exceeds the rate of thermal decomposition. As the plume becomes more dilute, the formation rate will decrease exponentially while the thermal decomposition rate is determined only by the temperature. For urban plumes that experience rapid lofting and wet removal of both HNO$_3$ and ΣANs, ΣPNs become the dominant NO$_y$ reservoir in the colder, lofted airmass (Altshuller, 1993; Singh and Salas, 1989; Talbot et al., 2003). The Mexico City Plume, as selected based on the criteria described above, was encountered exclusively below 5 km. The plume was almost entirely
Table 1. Column 1 identifies the hydrocarbons and columns 2 and 3 show OH rate constants and nitrate branching ratios for the suite of hydrocarbons observed in Mexico City. Columns 4–6 show the median concentrations and the associated ozone and alkyl nitrate production rates respectively.

<table>
<thead>
<tr>
<th>Hydrocarbons</th>
<th>k_{OH} (cm2 molecule$^{-1}$ s$^{-1}$)</th>
<th>α</th>
<th>Concentration (ppt)</th>
<th>$P(O_3)$ (ppt/hr)</th>
<th>$P(ANs)$ (ppt/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkanes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methane</td>
<td>6.34E-15</td>
<td>0.001</td>
<td>1 969 000</td>
<td>701</td>
<td>0.35</td>
</tr>
<tr>
<td>Ethane</td>
<td>2.58E-13</td>
<td>0.009</td>
<td>2966</td>
<td>43</td>
<td>0.19</td>
</tr>
<tr>
<td>Propane</td>
<td>1.10E-12</td>
<td>0.036</td>
<td>20 697</td>
<td>1 279</td>
<td>23.01</td>
</tr>
<tr>
<td>n-Butane</td>
<td>2.54E-12</td>
<td>0.083</td>
<td>8022</td>
<td>1144</td>
<td>47.49</td>
</tr>
<tr>
<td>n-Pentane</td>
<td>4.00E-12</td>
<td>0.123</td>
<td>1809</td>
<td>406</td>
<td>24.99</td>
</tr>
<tr>
<td>i-Butane</td>
<td>2.19E-12</td>
<td>0.027</td>
<td>2553</td>
<td>314</td>
<td>4.24</td>
</tr>
<tr>
<td>i-Pentane</td>
<td>3.90E-12</td>
<td>0.075</td>
<td>3625</td>
<td>794</td>
<td>29.77</td>
</tr>
<tr>
<td>2-Methylpentane</td>
<td>5.30E-12</td>
<td>0.111</td>
<td>1 004</td>
<td>299</td>
<td>16.59</td>
</tr>
<tr>
<td>3-Methylpentane</td>
<td>5.40E-12</td>
<td>0.109</td>
<td>628</td>
<td>190</td>
<td>10.38</td>
</tr>
<tr>
<td>Hexane</td>
<td>5.45E-12</td>
<td>0.212</td>
<td>753</td>
<td>230</td>
<td>24.43</td>
</tr>
<tr>
<td>Heptane</td>
<td>7.02E-12</td>
<td>0.278</td>
<td>217</td>
<td>86</td>
<td>11.89</td>
</tr>
<tr>
<td>Octane</td>
<td>8.71E-12</td>
<td>0.346</td>
<td>109</td>
<td>53</td>
<td>9.22</td>
</tr>
<tr>
<td>Nonane</td>
<td>9.99E-12</td>
<td>0.393</td>
<td>54</td>
<td>30</td>
<td>5.95</td>
</tr>
<tr>
<td>Decane</td>
<td>1.12E-11</td>
<td>0.417</td>
<td>54</td>
<td>34</td>
<td>7.08</td>
</tr>
<tr>
<td>Alkenes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethene</td>
<td>8.20E-12</td>
<td>0.0005</td>
<td>3999</td>
<td>1 842</td>
<td>0.46</td>
</tr>
<tr>
<td>Propene</td>
<td>2.63E-11</td>
<td>0.021</td>
<td>432</td>
<td>638</td>
<td>6.70</td>
</tr>
<tr>
<td>1-Butene</td>
<td>3.14E-11</td>
<td>0.039</td>
<td>73</td>
<td>129</td>
<td>2.51</td>
</tr>
<tr>
<td>Butadiene</td>
<td>6.66E-11</td>
<td>0.065</td>
<td>5</td>
<td>19</td>
<td>0.61</td>
</tr>
<tr>
<td>Isoprene</td>
<td>1.01E-10</td>
<td>0.07</td>
<td>23</td>
<td>130</td>
<td>4.57</td>
</tr>
<tr>
<td>Methylpropene</td>
<td>5.14E-11</td>
<td>0.012</td>
<td>45</td>
<td>130</td>
<td>0.78</td>
</tr>
<tr>
<td>2-Methyl 1-butene</td>
<td>6.07E-11</td>
<td>0.02</td>
<td>45</td>
<td>153</td>
<td>1.53</td>
</tr>
<tr>
<td>3-Methyl 1-butene</td>
<td>3.18E-11</td>
<td>0.059</td>
<td>11</td>
<td>20</td>
<td>0.58</td>
</tr>
<tr>
<td>2-Methyl 2-butene</td>
<td>8.69E-11</td>
<td>0.034</td>
<td>34</td>
<td>166</td>
<td>2.82</td>
</tr>
<tr>
<td>trans 2-Butene</td>
<td>6.40E-11</td>
<td>0.041</td>
<td>51</td>
<td>183</td>
<td>3.76</td>
</tr>
<tr>
<td>cis 2-Butene</td>
<td>5.64E-11</td>
<td>0.041</td>
<td>30</td>
<td>95</td>
<td>1.95</td>
</tr>
<tr>
<td>1-Pentene</td>
<td>3.14E-11</td>
<td>0.059</td>
<td>49</td>
<td>86</td>
<td>2.55</td>
</tr>
<tr>
<td>trans 2-Pentene</td>
<td>6.70E-11</td>
<td>0.064</td>
<td>42</td>
<td>158</td>
<td>5.06</td>
</tr>
<tr>
<td>cis 2-Pentene</td>
<td>6.50E-11</td>
<td>0.064</td>
<td>18</td>
<td>66</td>
<td>2.10</td>
</tr>
<tr>
<td>Aromatics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>1.22E-12</td>
<td>0.029</td>
<td>851</td>
<td>58</td>
<td>0.85</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>7.00E-12</td>
<td>0.072</td>
<td>290</td>
<td>114</td>
<td>4.10</td>
</tr>
<tr>
<td>Propylbenzene</td>
<td>5.80E-12</td>
<td>0.093</td>
<td>39</td>
<td>13</td>
<td>0.59</td>
</tr>
<tr>
<td>Toluene</td>
<td>5.96E-12</td>
<td>0.079</td>
<td>3805</td>
<td>1274</td>
<td>50.31</td>
</tr>
<tr>
<td>3-Ethyltoluene</td>
<td>1.86E-11</td>
<td>0.094</td>
<td>86</td>
<td>90</td>
<td>4.22</td>
</tr>
<tr>
<td>4-Ethyltoluene</td>
<td>1.18E-11</td>
<td>0.137</td>
<td>34</td>
<td>23</td>
<td>1.54</td>
</tr>
<tr>
<td>O-Xylene</td>
<td>1.36E-11</td>
<td>0.081</td>
<td>197</td>
<td>150</td>
<td>6.09</td>
</tr>
<tr>
<td>M-Xylene</td>
<td>2.30E-11</td>
<td>0.074</td>
<td>250</td>
<td>323</td>
<td>11.95</td>
</tr>
<tr>
<td>P-Xylene</td>
<td>1.43E-11</td>
<td>0.097</td>
<td>141</td>
<td>113</td>
<td>5.49</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>5.76E-11</td>
<td>0.127</td>
<td>5</td>
<td>16</td>
<td>1.03</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>3.25E-11</td>
<td>0.105</td>
<td>93</td>
<td>170</td>
<td>8.91</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>2.39E-13</td>
<td>0</td>
<td>60 00000</td>
<td>4027</td>
<td>0.00</td>
</tr>
<tr>
<td>H2CO</td>
<td>8.37E-12</td>
<td>0</td>
<td>7 793</td>
<td>1 832</td>
<td>0.00</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>1.58E-11</td>
<td>0</td>
<td>2 497</td>
<td>2 216</td>
<td>0.00</td>
</tr>
<tr>
<td>Acetone</td>
<td>1.79E-13</td>
<td>0</td>
<td>2 306</td>
<td>25</td>
<td>0.00</td>
</tr>
<tr>
<td>Methanol</td>
<td>9.11E-13</td>
<td>0</td>
<td>3 542</td>
<td>194</td>
<td>0.00</td>
</tr>
<tr>
<td>Ethanol</td>
<td>3.27E-12</td>
<td>0</td>
<td>978</td>
<td>192</td>
<td>0.00</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td>1.15E-12</td>
<td>0</td>
<td>305</td>
<td>21</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20 268</td>
</tr>
</tbody>
</table>
which we account for above. For comparison, CO decreases contribute primarily through the production of formaldehyde. Oxidation of larger hydrocarbons is likely to produce acetone and ethane (using concentrations of each observed in Mexico City). Formaldehyde has a thermal lifetime of less than 10 h.

Figure 4 shows fractional enhancement over the background for NO$_y$, CO, NO$_x$, ΣPNs and ΣANs. The fractional enhancement over background for species X is defined as:

\[\text{Fractional enhancement of species } X = \frac{(X - X_{\text{background}})}{(X_{\text{initial}} - X_{\text{background}})} \]

where X_{initial} is the mean observed concentration of species X at less than 10 h of photochemical aging and $X_{\text{background}}$ is the mean observed concentration of species X at the longest photochemical ages over the Gulf of Mexico. Background concentrations used were 132 ppb for CO, 1.22 ppb for NO$_y$ and as shown in Fig. 4a for the different NO$_y$ species. Fractional dilutions of NO$_y$ and CO indicates that the airmasses were not subject to large depositional losses, consistent with the fact that the plume was primarily encountered between 2 and 4 km and should have been connected to the planetary boundary layer weakly if at all. Figure 5b shows the fractional enhancement of the components of NO$_y$ divided by the fractional enhancement of CO, which should effectively cancel out the effect of dilution and allow us to examine the effect of chemistry. ΣPNs, which are primarily produced within the first 15 hrs of plume evolution, are depleted relative to CO throughout the plume. NO$_x$ is initially enhanced relative to CO because net dissociation of ΣPNs is a source of NO$_x$. In the most aged airmasses considered, NO$_x$ is depressed relative to CO because it has been converted to HNO$_3$. HNO$_3$ is chemically produced in the plume and thus lies above the dilution line. ΣANs behave similarly to HNO$_3$ confirming that they, too, continue to be produced as the plume ages although most of the production occurs early in the plume. The lines all converge at the longest photochemical age because that is what we have defined as “background” conditions.

3.3 The evolution of the relationship between ΣANs and O_x

Since O_x (O$_x$=O$_3$+NO$_2$) and ΣANs arise from alternative channels of Reaction (R1) the slope of the correlation of O_x and ΣANs is a measure of the balance between chain propagation (O_x production) and termination (ΣANs production) as long as losses of both are slow relative to production. This assumption will be investigated in more detail in Sect. 4.2. Lower slopes imply a more significant role for ΣANs formation. Figure 6 shows the observed correlation between O_x and ΣANs at a range of photochemical ages less than 5 h.
in red and at greater than 35 h in blue. The slope observed in the fresh plume (17 O$_x$/ΣAN) and the more aged plume (90 O$_x$/ΣAN) are shown by the solid lines. The dotted lines represent the slopes observed at intermediate age ranges (10–20 h, 20–30 h and 30–40 h) and show a gradual increase over time. The y-intercepts for the fits obtained for different photochemical ages are all similar (52.5±2.5 ppb O$_x$). It is therefore reasonable to assume a constant background for mixing with ΣAN levels that are low (0–50 ppt) and O$_x$ that is 50–55 ppb. If the whole plume is being diluted into the same background mixture, then dilution will impact the observed concentrations of O$_x$ and ΣANs but not affect the slope of the correlation.

The change in slope with time indicates a variable role for ΣAN production over the lifetime of the plume. Slopes of O$_x$/ΣANs have been reported for a number of different locations using ground-based ΣAN measurements at UC-Blodgett Forest Research Center (Day et al., 2003), Granite Bay CA (Cleary et al., 2005), Houston, TX (Rosen et al., 2004), the Big Hill field site in the Sierra Foothills (Murphy et al., 2006) and using airborne measurements made over the southeastern US aboard the NASA DC-8 (Perring et al., 2009a). Typically lower ΣANs v. O$_x$ slopes are observed in urban locations than in more rural ones. For comparison with the current dataset, Rosen et al. (2004) found a slope of 29 O$_x$/ΣANs in the morning in Houston which increased to 41 in the afternoon and the average afternoon slope that we observed at the T1 site in Mexico City during MILAGRO was 22. Levels of ΣANs in remote areas of the troposphere have been observed to be very low and observed O$_x$/ΣANs slopes in the remote Pacific are found to be 200–500. This is higher than the slope found for even the longest times considered in the present analysis and illustrates the fact that the Mexico City plume impacts much of the Gulf region.

The instantaneous production rates of O$_x$ and ΣANs are given by:

$$P (O_x)_{\text{inst}} = \Sigma_i \gamma_i (1 - \alpha_i) k_{OH+RH_i}[OH][RH_i]$$ \hspace{1cm} (4)$$

$$P (\Sigma ANs)_{\text{inst}} = \Sigma_i \alpha_i k_{OH+RH_i}[OH][RH_i]$$ \hspace{1cm} (5)$$
where \(\alpha_i \) is the nitrate branching ratio for RH\(_i\) and \(\gamma \) is the immediate number of O\(_3\) produced from the oxidation of RH\(_i\). \(\gamma \) is equal to 2 for most hydrocarbons since Reaction (R1b) typically results in the net production of 2 O\(_3\) molecules; one from photolysis of the NO\(_2\) formed directly from RO\(_2\)+NO and a second when subsequent alkoxy radical decomposition forms HO\(_2\) and that HO\(_2\) oxidizes NO to NO\(_2\) followed by photolysis of that NO\(_2\). See Rosen et al. (2004) for a more complete discussion of these equations. The variable slopes observed in the plume are the result of the integrated instantaneous production rates. While there is no simple analytical expression for the integrated production, in what follows we use the instantaneous production rates to assess whether we can explain the changes in the slope from point to point throughout the plume.

Taking the ratio of the two instantaneous production rates above we can find the relationship between the observed slope and the average branching ratio of the VOC mixture given by:

\[
P(O_3) \over P(\Sigma ANs) \equiv \bar{\gamma} (1 - \bar{\alpha}) \approx 2 - 2\bar{\alpha} \over \bar{\alpha}
\]

(6)

where \(\bar{\alpha} \) is the average branching ratio. A slope of 60 O\(_3\)/\(\Sigma\)ANs for example, implies \(\bar{\alpha} = 3.2\% \) while a slope of 20 implies \(\bar{\alpha} = 9.1\% \).

We can also calculate the production rate of O\(_3\) and \(\Sigma\)ANs based on known or assumed reaction rates and nitrate formation branching ratios as given by the Leeds Master Chemical Mechanism (MCM). Table 1 summarizes the values of \(\alpha \) and \(k_{OH} \) used in this analysis, the median concentrations of each VOC as observed within 5 h of Mexico City and the associated instantaneous production rates for O\(_3\) and \(\Sigma\)ANs. The calculated instantaneous O\(_3\)/\(\Sigma\)ANs slope for each point is the ratio of the total \(P(O_3) \) (column 5) to the total \(P(\Sigma ANs) \) (column 6). The calculated slope from Table 1 (for data within 5 h of Mexico City) is then 20.268/347, which is approximately 60 O\(_3\)/\(\Sigma\)ANs. Parallel calculations are performed for each of the different ranges of plume age. In addition to the 30 hydrocarbon species measured on-board the DC8, we have estimated concentrations of another 12 which are marked in the table by bold italic font with underlining. The nine unmeasured alkenes were estimated based on correlations with 1-butene observed at the T1 site. The three long-chain alkenes were estimated based on correlations with n-heptane observed in Houston. Observations described in Parrish et al. (2009) and others show that emission ratios of related hydrocarbons (as inferred from observed hydrocarbon ratios) vary little from city to city even though emission rates vary dramatically. The estimated compounds add \(\sim 5\% \) to \(P(O_3) \) and 13% to \(P(\Sigma ANs) \). Note also that we have not included \(\Sigma\)ANs themselves as precursor molecules in the initial calculations, as has been done previously (Rosen et al., 2004; Cleary et al., 2005). The specific molecular structure of the nitrates will determine both their OH reactivities and di-nitrate branching ratios and the extreme variation in possible values for both of these parameters in the evolving plume makes them hard to approximate with a single value.

4 Discussion

4.1 \(\Sigma\)ANs sources in Mexico City

The large \(\bar{\alpha} (10.5\%) \) implied by the 16.8 O\(_3\)/\(\Sigma\)ANs slope observed in and around Mexico City indicates a significant role for \(\Sigma\)ANs in the photochemistry of the region. \(\Sigma\)AN formation at such high \(\bar{\alpha} \) has a strong influence on O\(_3\) formation rates because RONO\(_2\) formation is competitive with HNO\(_3\) formation as a chain termination reaction for HO\(_x\) and NO\(_x\) catalytic cycles. Given this large influence it would be valuable to understand the \(\Sigma\)AN source molecules in detail. There are large differences between the observed (17) and calculated (60) \(\Sigma\)ANs v. O\(_3\) slope near Mexico City, which implies the existence of unexplained photochemistry. This could be due to a combination of (1) the presence of unmeasured compounds with large nitrate branching ratios, (2) underestimates of currently accepted branching ratios for measured compounds, (3) a large component of di-nitrate formation from \(\Sigma\)ANs (which would produce 2 molecules of NO\(_2\) in the TD-LIF).

Before further evaluation of these options it is useful to develop an independent check on the inferred \(\alpha \). One such independent check is to compare the observed ratio of \(\Sigma(C_1-C_5\) nitrates)/\(\Sigma\)ANs to the ratio calculated from the instantaneous production rate given by Eq. (5).

\[
\left(\frac{\Sigma(C_1-C_5\text{ nitrates})}{\Sigma\text{ANs}} \right)_{\text{calc}} \approx \frac{\sum_{i} \alpha_i \times k_{OH+RH_i} \times RH_i}{\sum_{i} \alpha_i \times k_{OH+RH_i} \times RH_i}
\]

(7)

where \(\alpha_i \) and \(k_{OH+RH_i} \) are reported branching ratios and OH rate constants for only the hydrocarbon precursors to the C\(_1\)-C\(_5\) nitrates measured by GC and \(\alpha_i \) and \(k_{OH+RH_i} \) are reported or estimated branching ratios and OH rate constants for the entire suite of observed and estimated hydrocarbons given in Table 1. \(\Sigma(C_1-C_5\text{ nitrates}) \) are predicted to be 27% of \(\Sigma\)ANs in Mexico City based on the relative production rates but they were only observed to be 10%. As with the discrepancy between calculated and observed \(\Sigma\)ANs v. O\(_3\) slopes, this indicates an underestimate of \(\Sigma\)AN production. We should also note that, similar to the analysis performed above regarding the relative production of O\(_3\) and \(\Sigma\)ANs, we have assumed that the loss rates of both C\(_1\)-C\(_5\) nitrates and \(\Sigma\)ANs are slow relative to production. The lifetimes of the simple C\(_1\)-C\(_5\) nitrates are well constrained by both laboratory and field measurements with typical photolysis lifetimes of \(\sim 13\) days (2-pentyl nitrate) to 10 days (methyl nitrate) and lifetimes to oxidation by OH (at OH=3\(\times 10^6\)) of 2 days (2-pentyl nitrate) to \(\sim 130\) days (methyl nitrate). We calculate an overall loss rate of 2.7 ppv/h for C\(_1\)-C\(_5\) nitrates in Mexico City (as compared
to an instantaneous production rate of 31 ppt/h). At (15 h, 35 h) we calculate an instantaneous production rate of (2.7, 0.5) ppt/h and a loss rate of (0.65, 0.4) ppt/h. The lifetime of \(\Sigma ANs\) as a class of compounds is more difficult to determine as the exact lifetime of any particular alkyl or multifunctional nitrate will depend on the specific structure. As a first guess we can make the approximation that, on average, they have an OH rate constant similar to that of toluene (a molecule with a moderately reactive double bond), that 20% of the reactions with OH lead to loss of nitrate functionality and release of NO\(_2\) (as opposed to creating a more functionalized nitrate) and that the photolysis rate is similar to n-pentyl nitrate (one of the larger and shorter-lived nitrates for which we have a well-characterized photolysis lifetime). We then calculate a loss rate of 13.6 ppt/h in Mexico City, 1.6 ppt/h at 500 km and 1.3 ppt/h at 1000 km as compared to production rates of 638, 66 and 14 ppt/h at 0, 500 and 1000 km respectively.

The analyses described above examining the production rate of \(\Sigma ANs\) relative to both \(O_3\) and \(C_1-C_5\) nitrates lead to remarkably similar conclusions. As outlined previously, the slope (17) of the correlation between \(\Sigma ANs\) and \(O_3\) observed in Mexico City implies an average branching ratio for nitrate formation of 10.5%. In contrast, the average branching ratio for nitrate formation calculated from current chemical mechanisms is 3.2% and the \(O_3/\Sigma ANs\) correlation implies that the rate of \(\Sigma ANs\) production is 3.3 times higher than expected. In corroboration, the observed fraction of \(\Sigma ANs\) comprised of \(C_1-C_5\) nitrates is 10% rather than the expected 27% implying that \(\Sigma ANs\) production is 2.7 times higher than expected. Below we examine some possible explanations for the higher-than-expected \(\Sigma ANs\) production rate.

First we consider the possibility of unmeasured nitrate precursors. A large burden of long-chain (>C\(_{10}\)) alkanes has been proposed based on observations of SOA in large urban centers and analysis of diesel exhaust (Robinson et al., 2007). Since long-chain alkanes have high nitrate formation branching ratios (~35%), adding them to our inventory could bring the observed and calculated branching ratios into agreement. A concentration of 0.5 ppb of a compound that reacted gas kinetically with OH and had a branching ratio of 35% would result in a calculated \(O_3/\Sigma ANs\) slope near Mexico City of 25 \(O_3/\Sigma AN\) (compared to the observed value of 17) and a calculated \(\Sigma(C_1-C_5\) nitrate)/\(\Sigma ANs\) ratio of 8% (compared to the observed value of 10%).

A second possible explanation is that current estimates of nitrate branching ratios for some compounds that were measured are too low. Most notably, Mexico City is observed to have a large burden of aromatic compounds and there currently exists no aromatic oxidation experiment in the presence of NO\(_3\) that has shown carbon closure. The nitrate branching ratios used here are those used in MCM which are estimated using an expression proposed by Carter and Atkinson (1989). The full implementation of the MCMv3.1 aromatic oxidation scheme is described by Bloss et al. (2005).

In addition to uncertainty in the yield of nitrates from the initial oxidation of aromatic compounds, there is a high degree of uncertainty in the yields of ring-opening vs. ring-retaining products (Hamilton et al., 2003; Jenkin et al., 2003; Wagner et al., 2003; Wyche et al., 2009). The products of ring-opening pathways could themselves have high nitrate yields and significant nitrate formation could thus result from oxidation of the first-generation products of aromatic oxidation. A doubling of the nitrate branching ratio for all aromatic compounds would decrease the calculated \(\Sigma ANs\) v. \(O_3\) slope to 39 and the calculated \(\Sigma(C_1-C_5\) nitrates)/\(\Sigma ANs\) ratio to 22% which is an improvement. While uncertainties in nitrate formation from aromatic compounds alone are unlikely to bring the calculations and observations into complete agreement, nitrate formation from aromatics and their oxidation products is significant in Mexico City and further study is warranted.

The third possibility is that \(\Sigma ANs\) themselves are the unaccounted-for nitrate precursors. As noted above, they were not included in the initial calculation due to uncertainties in rate constants and branching ratios but it is highly likely that there is appreciable di-nitrate formation in the chemical environment of Mexico City. The calculations performed for datasets in Granite Bay and Houston assumed an \(OH\) rate constant of \(1.6x10^{-11}\) molec/cm\(^3\)/s and a branching ratio of 5%. If we include \(\Sigma ANs\) in the calculation here using these parameters, the calculated \(\Sigma ANs\) v. \(O_3\) slope and \(\Sigma(C_1-C_5\) nitrates)/\(\Sigma ANs\) ratio are minimally changed. However, many of the 1st generation nitrates in Mexico City should be large molecules that retain at least one double bond. They may therefore react relatively quickly with \(OH\) and should have reasonably high branching ratios. If we assume that they have an OH rate constant of \(7x10^{-11}\) cm\(^3\)/molec/s, comparable to estimates of OH rate constants for isoprene nitrates (Perring et al., 2009a; Giacopelli et al., 2005) and a branching ratio of 17%, then the calculated \(\Sigma ANs\) v. \(O_3\) slope is 25 and the calculated \(\Sigma(C_1-C_5\) nitrates)/\(\Sigma ANs\) ratio is 0.08 which is comparable agreement to that achieved by the addition of 0.5 ppb of unmeasured long-chain hydrocarbons.

We should also note that the nighttime reaction of NO\(_3\) with alkenes is known to give rise to \(\Sigma ANs\) production without associated \(O_3\) production (Warnke et al., 2004). The nitrate formation rate from NO\(_3\)-initiated oxidation is typically much higher than for \(O_3\)-initiated oxidation and this reaction could represent a significant source of \(\Sigma ANs\). Based on concentrations of NO, NO\(_2\) and O\(_3\) observed at the T1 site in the hours before sunset (medians of 1 ppb, 8.6 ppb and 63 ppb respectively) and a nighttime temperature of \(10^\circ\)C, we calculate a possible total combined NO\(_3\) and N\(_2\)O\(_3\) (an NO\(_3\) reservoir species) production of 1.4 ppb over the course of a typical night. Therefore, even if all of the available NO\(_3\) were to react with alkenes with a 70% nitrate yield, it would lead to a maximum production of 1 ppb of \(\Sigma ANs\) which is ~20% of observed daytime concentrations and would perturb the
Ox/ΣANs slope by a similar amount, far smaller than the observed discrepancy. In addition, significant nighttime concentrations (100’s of ppt) of NO were observed at the T1 site at night, presumably due to local NO emissions. NO emissions would inhibit the accumulation of appreciable concentrations of NO3 by titration. If we instead calculate potential NO3 and N2O5 production based on median concentrations of NO, NO2 and O3 observed aboard the NASA DC-8 (0.4 ppb, 1.2 ppb and 68 ppb respectively), the potential production is much smaller (~110 ppt). It is therefore likely that typical nighttime concentrations of NO3 and N2O5 are substantially lower than the possible 1.4 ppb calculated above and that ΣANs production from NO3 oxidation of alkenes is insignificant compared to typical daytime production rates of 0.3–0.5 ppb/h. Downwind of Mexico City, the possible nighttime production of NO3 and N2O5 from observed NO2 and O3 is only a few ppt.

In summary, measured ratios of ΣANs to Ox in Mexico City are high, corresponding to an average implied branching ratio of 7–10%, and are much larger than calculated based on observed and estimated hydrocarbons. We identify three poorly known possible candidates for reducing the modeled-measured difference: (a) the presence of unmeasured, long-chain compounds with high yields, (b) underestimates of nitrate yields from organic molecules and (c) higher rates of dinitrate formation than have previously been considered in other locations and show that all of them are consistent with the data. All three should be subject to further investigation.

4.2 Evolution of the Ox vs. ΣANs correlation

The calculated and observed Ox vs. ΣANs can generally only be directly compared in the near-field of a source region where production outweighs all other factors. As the plume ages the most reactive primary VOC are depleted, enhancing secondary OVC and resulting in a mixture that produces the overall slope (Δ(Ox)/Δ(ΣANs)) is given by:

$$M_n = \sum_{i=1}^{n} \Delta(Ox)_i \cdot \Delta t_i$$

Clearly for the first time interval, given correct chemistry, the overall slope (M_1) should be similar to the instantaneous slope ($\Delta(Ox)_1/\Delta(\Sigma ANs)_1$). If the calculated and the observed slopes matched reasonably well for the first time interval we could simply calculate M_2 using the equation above and compare it to the observed M_2. Since, however, the observed and calculated slopes are entirely dissimilar at point 1, the observed and calculated slopes at point 2 would be different regardless of whether the calculated instantaneous production was correct over Δt2 because the second step in the calculation is impacted by the error in the first. What we really want to assess is whether the calculated instantaneous production rates during Δt2 can explain the change between M_{1obs} and M_{2obs}. To do this we calculate M_n for $n>1$ using the observed M_{n-1} slope as follows:

$$M_{n-1,obs} \times \sum_{i=1}^{n-1} \Delta(\Sigma ANs)_i + \Delta(Ox)_n \left(\sum_{i=1}^{n} \Delta(\Sigma ANs)_i\right)$$

Figure 7a shows the observed Ox vs. ΣANs slope as compared to that expected based on stepwise integration of the calculated instantaneous ΣANs and Ox production rates performed as described above. The first point shown in Fig. 7a is a direct comparison of the calculated instantaneous Ox/ΣANs with the observed Ox/ΣANs correlation in Mexico City. We then calculate successive slopes by combining the observed slope at the earlier time with the instantaneous production rate at the later time. This prevents an error in the initial condition from propagating through the entire calculation. The calculated slope in Mexico City and just downwind
The observed (red) and calculated (purple) ΣANs ratio as a function of photochemical age. Shaded areas, again, represent the 1σ variation of the data.

is considerably higher than the observed slope but the agreement improves substantially by >30 h of photochemical aging. Again, we can corroborate this result using the ratio of Σ(C$_1$–C$_5$ nitrates)/ΣANs (Fig. 7b). The observed and calculated Σ(C$_1$–C$_5$ nitrates)/ΣANs ratios converge within 15 h. Thus, the compounds responsible for the excess ΣANs observed in Mexico City likely have short oxidative lifetimes and are consumed early in the plume evolution. Any of the above hypotheses would be consistent with this behavior.

4.3 Impacts of ΣANs chemistry on predicted O_3 production

The slope of O_3/ΣANs was observed to be remarkably high in Mexico City as compared to other urban locations. The formation of alkyl and multifunctional nitrates affects our ability to predict O_3 production both because it represents a direct alternative to the generation of NO$_2$ and thus O_3 from the RO$_2$+NO reaction and because of the less direct feedback on RO$_2$ and HO$_2$ concentrations. ΣANs formation has not been evaluated in detail in the current generation of chemical models, a fact we suggest should be remedied in the near future. Any regional or global model, aimed at predicting O_3 concentrations, that fails to take this chemistry into account will over-predict O_3 production as a result. We can estimate the magnitude of this effect using observed radical species and a series of simple equations. The instantaneous gross O_3 production is defined as:

$$P(O_3) = |NO| \cdot (k_{NO+HO_2} [HO_2] + k_{NO+RO_2} [RO_2])$$

We have measurements of NO and HO$_2$ and we can calculate RO$_2$ by assuming conservation of radicals and setting $P(HO_x) = L(HO_x)$ where HO$_x$ is defined as OH+HO$_2$+RO$_2$. RO$_2$ production arises from the photolysis of HO$_2$ in the presence of water, CH$_2$O and H$_2$O$_2$ with minor contributions from a number of oxygenated VOC’s (OVOCs). For the analysis described here we have included photolysis of acetaldehyde, acetone, propanal, methanoic acid and HNO$_3$ to give an overall HO$_2$ production rate of:

$$P(HO_x) = 2J_{O_3} + O(1D)[O_3] \cdot [H_2O] / [M]$$

$$+ 2J_{CH_2O+H}[HO_2] [CH_2O] + 2J_{HO_2}[H_2O]$$

$$+ 2J_{Acetaldehyde}[CH_3CHO] + 2J_{Acetone}[CH_3C(O)CH_3]$$

$$+ 2J_{Propanal}[C_2H_5CHO] + 2J_{CH_3COOH}[CH_3COOH]$$

$$+ J_{HNO_3}[HNO_3]$$

HO$_x$ loss occurs through production of HNO$_3$, ΣANs and organic peroxides (HOOH, ROOH or ROOR). The initiation reaction of OH+RH is not considered a HO$_x$ loss because, although it consumes one molecule of OH, it results in the almost instantaneous production of an RO$_2$ molecule. Production of HNO$_3$ or alkyl nitrates consumes a single HO$_x$ molecule while production of hydrogen peroxide or organic peroxides consumes two HO$_x$ molecules so $L(HO_x)$ can be written as:

$$L(HO_x) = 2 \left(k_{HO_2+HO_2}[HO_2]^2 + k_{RO_2+RO_2}[RO_2]^2 \right)$$

$$+ k_{HO_2+RO_2}[HO_2][RO_2] + k_{OH+NO}[OH][NO_2]$$

$$+ \alpha k_{RO_2+NO}[RO_2][NO]$$

Where α is the nitrate branching ratio. Setting $P(HO_x) = L(HO_x)$ and inserting measured values of OH, HO$_2$, NO and NO$_2$, we can solve the quadratic equation to find the RO$_2$ concentration. In what follows we have calculated RO$_2$ for each of the times for which we extracted an effective branching ratio from the observations in Sect. 3.3 above. Taking a water concentration of 0.6%, we use $k_{OH+NO_2} = 1.22 \times 10^{-11}$ cm3/molecs/s, $k_{HO_2+HO_2} = 2.74 \times 10^{-12}$ cm3/molecs/s, $k_{HO_2+RO_2} = 8 \times 10^{-12}$ cm3/molecs/s and $k_{RO_2+NO} = 6.8 \times 10^{-14}$ cm3/molecs/s based on JPL evaluation number 15 (Sander
The work presented here was funded by... 2010.

...the calculated effect of including this chemistry in a model is to reduce... producing alkyl nitrate production is high, the calculated effect persists, albeit minorly, downwind of the city and the integrated effect of neglecting alkyl nitrate formation leads to significant errors in the calculated O₃ production over the lifetime of the megacity plume.

5 Conclusions

ΣANs have been observed to be a significant (~10%) fraction of NOₓ in the immediate vicinity and well downwind of Mexico City. Hundreds of pptv of ΣANs were observed over the Gulf of Mexico. The ΣANs fraction of NOₓ increases with increasing photochemical age and indicates continued production of ΣANs far from the source region. The source of ΣANs is larger in the Mexico City plume than in other urban locations. The effect of ΣANs on calculated P(O₃) is ~30%, a value that is unexpectedly large and that implies careful consideration should be given to the role of ΣAN formation in discussion of any O₃ control strategies. We find that these observations of high ΣAN concentrations require one of more of the following: the presence of unmeasured, long-chain hydrocarbons with high nitrate formation rates, underestimates in nitrate formation rates for some fraction of the measured compounds, and/or a larger role for the formation of di-nitrates than has been considered previously. The evolution of the plume downwind indicates that the unknown compounds responsible are relatively short-lived.

Acknowledgements. The work presented here was funded by NASA headquarters under the NASA Earth Systems Science Fellowship Program and by NASA grant #NAG5-13668. The authors would also like to sincerely thank Brian Heikes and Alan Fried for the use of their formaldehyde data, Melody Avery for the use of her ozone data, Bill Brune for the use of his HOx measurements and Greg Huey for the use of his NO measurements.

Edited by: A. Hofzumahaus

References

Molina, L. T., Madronich, S., Gaffney, J. S., Apel, E., de Foy,

