Oxidative capacity of the Mexico City atmosphere – Part 2: A RO\textsubscript{x} radical cycling perspective

P. M. Sheehy1,2, R. Volkamer1,3,4, L. T. Molina1,2, and M. J. Molina1,3

1Massachusetts Institute of Technology, Cambridge, MA, USA
2Molina Center for Energy & the Environment, La Jolla, CA, USA
3University of California at San Diego, La Jolla, CA, USA
4University of Colorado at Boulder and CIRES, Boulder, CO, USA

Received: 20 December 2007 – Published in Atmos. Chem. Phys. Discuss.: 17 March 2008
Revised: 12 July 2010 – Accepted: 14 July 2010 – Published: 30 July 2010

Abstract. A box model using measurements from the Mexico City Metropolitan Area study in the spring of 2003 (MCMA-2003) is presented to study oxidative capacity (our ability to predict OH radicals) and RO\textsubscript{x} (RO\textsubscript{x} = \textit{OH} + \textit{HO}_2 + \textit{RO}_2 + \textit{RO}) radical cycling in a polluted (i.e., very high NO\textsubscript{x} = \textit{NO} + \textit{NO}_2) atmosphere. Model simulations were performed using the Master Chemical Mechanism (MCMv3.1) constrained with 10 min averaged measurements of major radical sources (i.e., HCHO, HONO, O\textsubscript{3}, CHOCHO, etc.), radical sink precursors (i.e., NO, NO\textsubscript{2}, SO\textsubscript{2}, CO, and 102 volatile organic compounds (VOC)), meteorological parameters (temperature, pressure, water vapor concentration, dilution), and photolysis frequencies.

Modeled HO\textsubscript{x} (=\textit{OH} + \textit{HO}_2) concentrations compare favorably with measured concentrations for most of the day; however, the model under-predicts the concentrations of radicals in the early morning. This “missing reactivity” is highest during peak photochemical activity, and is least visible in a direct comparison of HO\textsubscript{x} radical concentrations. We conclude that the most likely scenario to reconcile model predictions with observations is the existence of a currently unidentified additional source for RO\textsubscript{2} radicals, in combination with an additional sink for HO\textsubscript{2} radicals that does not form OH. The true uncertainty due to “missing reactivity” is apparent in parameters like chain length. We present a first attempt to calculate chain length rigorously i.e., we define two parameters that account for atmospheric complexity, and are based on (1) radical initiation, \textit{n(OH)}, and (2) radical termination, \textit{\omega}. We find very high values of \textit{n(OH)} in the early morning are incompatible with our current understanding of RO\textsubscript{x} termination routes. We also observe missing reactivity in the rate of ozone production (\textit{P(O_3)}). For example, the integral amount of ozone produced could be under-predicted by a factor of two. We argue that this uncertainty is partly accounted for in lumped chemical codes that are optimized to predict ozone concentrations; however, these codes do not reflect the true uncertainty in oxidative capacity that is relevant to other aspects of air quality management, such as the formation of secondary organic aerosol (SOA). Our analysis highlights that apart from uncertainties in emissions, meteorology, and chemistry, there is an additional major uncertainty in chemical mechanisms that affects our ability to predict ozone and SOA formation with confidence.

1 Introduction

Implementing robust air pollution control strategies as part of effective air quality management requires a detailed understanding of the oxidative capacity of the atmosphere: the oxidation of volatile organic compounds (VOC) initiated by the hydroxyl radical (OH) starts radical cycling via HO\textsubscript{x} and NO\textsubscript{x} chemistry in the troposphere that drives a variety of chemical processes, including ozone formation and secondary organic aerosol (SOA) formation. In an urban area, the complexity of the tropospheric chemistry is increased by anthropogenic emissions, which requires sophisticated
chemical models to formulate effective control and mitigation strategies.

The oxidation of VOC (see Fig. 1) generates organic peroxy radicals, RO₂, which can react with nitric oxide (NO), NO₂, and other RO₂ to form the analog alkoxy radical (RO), and nitrogen dioxide (NO₂). The alkoxy radical reacts in the presence of oxygen to generate the hydroperoxyl radical, HO₂, which will readily react with NO to generate recycled OH and NO₂. The conversion of NO to NO₂ via ROₓ cycling in the troposphere followed by NO₂ photolysis is key to understanding ozone formation. Studying the reactive processes of these radicals is essential to understanding the general oxidative capacity of the atmosphere.

Radical initiation – the breakdown of a closed shell species yielding a new radical – plays an important role in tropospheric chemistry, as it starts the processes that form secondary pollutants; however, radical cycling – the amplification of new radicals in the ROₓ-NOₓ cycle – dominates in polluted atmospheres e.g., Mexico City Metropolitan Area (MCMA), where NOₓ concentrations are high enough so that radical propagation reaction rates dominate over radical termination rates and can be up to an order of magnitude greater than radical source terms. In a companion paper Volkamer et al. (2010) quantify new radical production \(P(\text{HO}_2) \) in the MCMA and on average, 20% of radical production is attributable to the breakdown of closed shell species, while 80% is due to radical cycling. As such, it is important that we understand radical cycling (and recycling), in addition to radical sources.

Direct detection of OH and HO₂ is difficult because they are both highly reactive and are present at low concentrations. Although an increasing number of studies combine OH and HO₂ measurements and modeling, only a few field campaigns included HO₂ measurements in a polluted urban or semi-urban atmosphere. Measurements of HO₂ in an urban atmosphere have been made in London (Abram et al., 2000) and Birmingham, UK (Heard et al., 2004); Los Angeles, CA (George et al., 1999); Nashville, TN (Martinez et al., 2003); Houston, TX (Martinez et al., 2002); New York, NY (Ren et al., 2003); near Berlin, Germany (Platt et al., 2002)\(^1\); at Birmingham near London (Emmerson et al., 2007); and more recently in Mexico City (Shirley et al., 2006; Dusanter et al., 2009). The study described here is characterized by a very polluted airmass in the MCMA with elevated levels of NOₓ (with campaign median concentrations ranging from 8–134 ppb throughout the day).

The focus of this work is similar to that of Emmerson et al. (2007), and includes comparisons between predicted and measured values of OH and HO₂ to ROₓ, and a detailed analysis of the impact of radical cycling on the oxidative capacity of the urban troposphere. Our work differs in that we are dealing with extraordinarily high NOₓ concentrations and VOC loadings, and explore the effects of these unique characteristics of the airmass on radical initiation (Volkamer et al., 2010) and the amplification of these new radicals due to cycling. The extensive amount of data collected during the MCMA-2003 campaign (Molina et al., 2007) and recent improvements to the MCM (Bloss et al., 2005a,b) afford an excellent opportunity to explore a variety of questions related to ROₓ chemistry. In general, predicted HO₂ radical concentrations are lower than measured concentrations, and defined here as “missing reactivity”. The term “missing reactivity” is used because the lower-than-measured concentrations of radicals leads to lower levels of reactivity in the ROₓ radical cycling. This in turn affects reactive processes such as ozone and SOA formation. This “missing reactivity” is discussed in greater detail below, and leads to an analysis of the mechanism with regard to ROₓ cycling. Model scenarios are varied with regard to HO₂ to elucidate the effects of “missing reactivity” on VOC oxidation and photochemical ozone production in the MCMA.

We use a near-explicit chemical mechanism to evaluate the impacts of the “missing reactivity” via quantitative measures such as chain length and ozone production. Chain length is a measure of the number of times that OH goes through the ROₓ cycle before a termination reaction. Whereas Part 1 of this study (Volkamer et al., 2010) focuses on radical

\(^1\)This refers to a semi-rural/urban site near Berlin, Germany. It is important to note that the highest levels of observed NO were limited to a few ppbv, and that there were strong biogenic influences.
initiation, this work focuses on radical propagation or recycling. The calculation of chain length is dependent on an implicit knowledge of branching ratios\(^2\) within the chemical mechanism. Ozone production is another quantitative parameter used to understand “missing reactivity”. The variables used to calculate ozone production are well constrained by measurements, which enables a useful comparison to the value calculated using the modeled values.

2 The mechanism and the model

The work presented here was performed using the latest version of the Master Chemical Mechanism (MCMv3.1) (Bloss et al., 2005a,b). This version of the MCM includes the degradation kinetics and oxidation schemes of 135 VOC, based on mechanisms described by Jenkin et al. (1997) and Saunders et al. (2003). The updated version includes an improved understanding of aromatic schemes using results from recent laboratory studies (e.g., Olariu et al., 2000; Olariu, 2001; Volkamer et al., 2001; Bethel et al., 2001; Martin et al., 2002; Volkamer et al., 2002). The MCMv3.1 is well suited over a wide range of NO\(_x\) and VOC conditions because it explicitly represents the sources and sinks of OH, HO\(_2\), and RO\(_2\) radicals, rather than lumping them. The near-explicit code enables the user to account for individual reactive pathways, which is ideally suited to study RO\(_2\) radical cycling. We used the FACSIMILE (Curtis and Sweetenham, 1987) software package as our numerical integrator for the box model.

The model calculations were performed on a 24-h basis, and were initialized every 10-min with the constrained input parameters listed below. The model is constrained for the following major species, including measurement uncertainties: NO (±15%), NO\(_2\) (±20%), HONO (±10%), O\(_3\) (±15%), SO\(_2\) (±20%), and CO (±15%). The model is also constrained for 100 VOC (see Supplemental Material), temperature, pressure, water vapor concentration, J-values, and dilution in both the horizontal and vertical fields. Photolysis frequencies were measured by spectroradiometry, and the dilution parameter used is described in Part 1 (Volkamer et al., 2010).

The following modeling scenarios, in terms of constraints, were used to study HO\(_x\) chemistry in the MCMA, including estimated model uncertainties for each case:

- HO\(_x\)-unconstrained: The model was constrained for species including NO, NO\(_2\), HONO, O\(_3\), SO\(_2\), CO, 100 VOC, temperature pressure, water vapor concentration, J-values, and dilution in both the horizontal and vertical fields. In this case, we report model uncertainties for OH and HO\(_2\) of ±55% and ±70%, respectively.
- OH-constrained: in addition to the parameters listed in the HO\(_x\)-unconstrained case, a campaign median diurnal profile of OH is used to constrain the mechanism. In this case, we estimate an uncertainty of ±60% for HO\(_2\).
- HO\(_2\)-constrained: in addition to the parameters listed in the HO\(_x\)-unconstrained case, a campaign median diurnal profile of HO\(_2\) is used to constrain the mechanism. In this case, we estimate an uncertainty of ±45% for OH.
- HO\(_x\)-constrained: in addition to the parameters listed in the HO\(_x\)-unconstrained case, we used a campaign median diurnal profile of both OH and HO\(_2\), from Shirley et al. (2006) to constrain the mechanism in addition to the parameters described above. The HO\(_x\) measurements were increased by a factor of 1.3 in accordance with recommended changes to previously reported measurements (W. H. Brune, personal communication, 2007). Shirley et al. (2006) report a measurement uncertainty of ±32%.

In each case, model uncertainties were determined based on a) the experimental uncertainties of the dominant reaction rate constants for initiation (e.g., HONO photolysis), propagation (e.g., HO\(_2\)+NO), and termination (e.g., peroxide or nitrate formation) routes for each HO\(_x\) radical and b) measurement uncertainties for species constrained in the model.

Note that the HO\(_x\)-unconstrained model, the OH-constrained model, and the HO\(_2\)-constrained model yield a balanced model i.e., the radical termination, propagation, and initiation pathways for a radical are net zero. For instance, in a balanced model, the pathways for OH shown in Fig. 1 will yield the following: I1+P4=T1+P1+P5.

Apart from varying the constraints imposed on the model, we ran the model for a) individual days, b) campaign median concentration time profiles, and c) campaign average concentration time profiles in both unconstrained and constrained scenarios. The model was run for 18 days, 9–24 April 2003. We observed differences between concentration time profiles on a median and average basis, most notably at night. The results presented here focus exclusively on individual days and a median model, as night-time concentrations of NO – an important determinant in radical recycling rates (HO\(_2\)/RO\(_2\)+NO) – are up to 6 times higher on an average basis as compared to a median basis. As such, we consider the campaign average NO concentrations as statistical forcing rather than a realistic representation of the airmass and minimize this forcing by using median profiles.

\(^2\)In this context, we use the term “branching ratio” to refer to the ratio of radical fluxes of the multiple reaction pathways of a RO\(_x\) radical. This is not to be confused with the term branching ratio used in chain reaction theory for combustion kinetics.
Note that all concentrations, unless otherwise mentioned, are reported in parts per billion by volume (ppbV), and all times are reported as Central Standard Time (CST i.e., Coordinated Universal Time minus 6 (UTC−6)).

The model was constrained for 21 alkanes, 19 alkenes, 16 aromatics, and 23 oxygenated VOC, which includes alcohols, aldehydes, ketones, esters, ethers, and organic acids. The uncertainty for each parameter is a combination of measurement error, day-to-day variability, and the scaling methodology employed (as appropriate). See the discussion in the Supplemental Material for a more detailed description of the measurements, methodologies, and uncertainties for each of the constrained species.

We introduced a dilution parameter to represent physical transport of chemical species out of the MCMA. The reactive species in the model were diluted using a combination of two approaches: 1) using traffic counts and measured concentrations of CO (traffic-CO) to generate a proxy for the rising planetary boundary layer (PBL), and 2) by matching predicted photochemical HCHO with observations. If only the traffic-CO approach is used, then uncharacteristic chemical accumulation is observed. The increased dilution as a result of the HCHO modeling eliminates this unrepresentative accumulation of secondary products (i.e., oxidized volatile organic compounds, OVOC). For a more detailed discussion of the methodology employed to constrain the model for dilution, see Part 1 (Volkamer et al., 2010).

The photolysis frequencies for O₃ (J_{O_3}, ±25%), NO₂ (J_{NO_2}, ±15%), HCHO (J_{HCHO}, ±15%), CH₃CHO (J_{CH_3CHO},±15%), and HONO (J_{HONO},±15%) are constrained by measurements (Volkamer et al., 2005). The values for J_{HONO} have been multiplied by 1.43 to match recent absolute measurements made by Wall et al. (2006) consistent with results presented in Volkamer et al. (2010). The measured downwelling portion of each J-value was multiplied by 1.08 to account for surface albedo corrections. The code calculates photolysis rates solely as a function of solar zenith angle, which does not account for cloud coverage, scattering in the atmosphere, and the albedo of the earth’s surface. As such, the photolysis rates are corrected using a factor that is based on the average difference between the calculated and measured values for J_{NO_2}. Calculations were initially performed using clear sky conditions at a latitude of 19°21′32″ N and a longitude of 99°4′25″ W.

2.1 OH reactivity: first order loss of OH

For each of the modeling scenarios described previously, with the exception of the HOₓ-constrained scenario, OH loss is equal to OH production within $\tau_{OH} < 0.1$ s, i.e., OH is in steady state. The modeled and median measured OH reactivity – the pseudo first order rate loss of OH – are shown in the bottom panel of Fig. 2; the total OH reactivity predicted by the model is about 110 s⁻¹ during morning rush hour and a value of roughly 20–25 s⁻¹ during the day and between 45–50 s⁻¹ at night. These values are consistent with those measured by Shirley et al. (2006); however, there is a significant difference between measured and modeled values from 05:00–07:00, when NOₓ values are highest. The uncertainty in the total OH loss measurement is highest under high NOₓ conditions (Shirley et al., 2006). The degree of constraint imposed on the mechanism by inputs in terms of OH reactivity is shown in the upper panel of Fig. 2. Most notably, the fraction of OH reactivity due to reaction with unconstrained parameters linearly increases in the morning around 08:00 until 12:00. This increase is roughly 1 h after the onset of photochemical processing and due to the oxidation of primary VOC, resulting in the formation of secondary products. The formation of secondary products and their subsequent oxidation results in an increase of unconstrained OH loss of roughly 5% per hour, reaching a maximum of 25%. The decrease in the fraction of OH loss from unconstrained parameters around 12:00 reflects the venting of the MCMA, is consistent with an observed decrease in new OH radical production (Volkamer et al., 2010), and reflects the dilution implemented in the code (see Volkamer et al. (2010) for details).
3 Results and discussion

3.1 Missing OH reactivity

Recent findings indicate that primary organic aerosol (POA) upon dilution from the tailpipe of a car to atmospheric conditions may act as a source of semivolatile hydrocarbons in urban air, so-called semi-volatile organic compounds (SVOC) and intermediate volatility organic compounds (IVOC) (Donahue et al., 2006; Robinson et al., 2007). SVOC and IVOC make a significant contribution to SOA formation (Dzepina et al., 2009). The chemical identity of these hydrocarbons is unclear, and, as such, SVOC and IVOC are not represented in MCM. These species could be relevant to SOA formation (Robinson et al., 2007) and possibly ozone production. We estimate here for the first time the possible contribution of SVOC and IVOC to OH reactivity to assess whether the gap between modeled and measured reactivity can be attributed to these species. We calculated the OH reactivity of SVOC and IVOC by estimating the amount of each in the gas phase using POA measurements (Salcedo et al., 2006): SVOC+IVOC=4-POA+7.5-POA.

Here, we parameterized the data from Fig. 1a in Robinson et al. (2007) to account for the effects of variable partitioning depending on POA partitioning mass. We used a molecular weight of 250 g mol$^{-1}$ (corresponding to a C$_{18}$ alkane), suggested by Robinson et al. (2007), to convert µg m$^{-3}$ to units of molec cm$^{-3}$. Using this concentration, and a generic rate constant for reaction with OH radicals of 4×10$^{-11}$ cm3 molec$^{-1}$ s$^{-1}$ reported by Robinson et al. (2007), we calculate the corresponding OH loss rate. The results are plotted as an overlay in Fig. 2. Using this methodology, we observe a modest increase of 4–14 s$^{-1}$ of OH reactivity (about 10% of the measured value). The existence of SVOC and IVOC is consistent with the observation of a gap in OH reactivity, though insufficient to obtain closure. The OH reactivity in our model is about 10–20% too low. The largest differences tend to be observed between 04:00–06:00, and also in the afternoon (12:00–16:00). Notably, Lewis et al. (2000) identified an additional mechanism for OH loss in terms of volatile carbon in the range of C$_{6}$ to C$_{14}$ as oxygenated aromatic and aliphatic molecules. These molecules are difficult to quantify with the measurement techniques used during MCMA-2003, and they appear to be only partially captured by our model-predicted OVOCs, and estimates of SVOC/IVOC. Notably, the portion of unaccounted OH reactivity in our model is relatively small and we do not observe an over-prediction of OH radicals in the afternoon as has been noted in previous studies (Lewis et al., 2000; Carslaw et al., 1999). Future studies will need to demonstrate whether the parameterization of SVOC and IVOC from laboratory generated POA provide for a meaningful extrapolation to the atmosphere, and whether additional unmeasured compounds could cause additional OH loss. It appears, however, from this analysis that SVOC and IVOC, in addition to their role as SOA precursors, also make a sufficiently large contribution to OH reactivity to be potentially relevant to O$_{3}$ formation.

3.2 HO$_{2}$: measured vs. modeled

The HO$_{2}$-unconstrained model accurately predicts the diurnal profile of both OH and HO$_{2}$, as shown in Fig. 3a, c. When compared to a lower limit of measured OH values3, the model predicts OH concentrations within measured and modeled uncertainties for the day with the exception of about 05:30 to 06:30 (Fig. 3a). In the early morning, between 06:00–07:00 (i.e., rush hour), the model under-predicts OH radicals by about a factor of 3–4. Similarly, a consistent under-prediction is observed in the evening after 18:00, though slightly less than in the morning. Between 07:30–16:00, the model and the measurements are in excellent agreement, with the ratio of measured-to-modeled concentrations varying between 0.93 and 1.35 i.e., within error bars of the measurements and the model.

The model under-predicts the concentration of HO$_{2}$ for the entire day, and most notably between midnight and 10:00. The measured-to-modeled ratios are consistently between 3–10 before 07:00. The predicted concentrations do not fall within the measurement and modeled uncertainty until around 10:00. The model predicts HO$_{2}$ concentrations within modeled and measured uncertainties between 10:00 and 18:30. Thereafter, the ratio of measured-to-modeled concentrations starts increasing and varies between 5–12 for the remainder of the day.

The median concentrations of predicted OH and HO$_{2}$ from individual day modeling show good agreement with the predicted OH and HO$_{2}$ from the HO$_{2}$-unconstrained model of campaign median concentration inputs of HO$_{2}$ sources and sinks (not shown). A linear regression of individual day OH and HO$_{2}$ modeled predictions versus measured values yields the following relationships:

\[
[\text{OH}]_{\text{model}} = 0.73 \cdot [\text{OH}]_{\text{meas}} + 0.02 \text{ ppt}, \quad R^2=0.98, \quad \text{and} \\
[\text{HO}_{2}]_{\text{model}} = 0.74 \cdot [\text{HO}_{2}]_{\text{meas}} - 2.79 \text{ ppt}, \quad R^2=0.96.
\]

Despite what appears to be an excellent correlation ($R^2>0.95$) between measured and modeled values, a more thorough analysis shows these results belie the lack of radicals at high concentrations of NO$_{x}$. For both OH and HO$_{2}$, the measured-to-modeled regression relationship is predominantly determined by the higher concentrations in the afternoon. As such, the linear regression is skewed in favor of times when the model more accurately predicts HO$_{2}$ concentrations (which, is also at low NO$_{x}$ conditions).

\footnote{The lower limit is based on a 0.01 ppt, statistical offset. We found that there was improved agreement between measured and modeled OH concentrations based on overlap of error bars, in addition to better agreement in the comparison of measured and modeled HONO concentrations using the lower limit of OH. See Volkamer et al. (2010) for a more detailed discussion.}
Fig. 3. Measured (black) and modeled (red) diurnal concentrations of HO\textsubscript{x} are shown for each of the three balanced model cases: (a) OH, HO\textsubscript{2}-unconstrained, (b) OH, HO\textsubscript{2}-constrained, (c) HO\textsubscript{2}, HO\textsubscript{x}-unconstrained, and (d) HO\textsubscript{2}, OH-constrained. In the upper panel of each graph, the measured-to-modeled ratios are also shown. Note that for the top panels of OH, A and B, “measured” refers to values reported by Shirley et al. (2006) multiplied by 1.3 and include a 0.01 ppt offset subtracted from the measured values as discussed in the text and in Volkamer et al. (2010).

When the model is constrained for HO\textsubscript{2} (Fig. 3b), it is unable to predict the diurnal profile of OH. As a result of the HO\textsubscript{2} forcing, the model over-predicts the concentration of OH for the majority of the day, most notably in the morning 04:00–10:00, and at night, 19:00–24:00. The overprediction of OH from the HO\textsubscript{2}-constrained model is partly compensated by the fact that our pseudo-first-order OH loss rate is most underestimated during this part of the day (see Fig. 2). The HO\textsubscript{2} constrained prediction of OH would be in better agreement with the observations if this missing OH loss was accounted for. Despite this limitation, we do observe overlap in the observed and predicted concentrations during much of the day, 10:00–18:00. The distorted diurnal profile of OH and the over-prediction of the concentration reflects the strong coupling between HO\textsubscript{2} and OH via NO.

The OH forcing (Fig. 3d) affects modeled HO\textsubscript{2} concentrations less directly, particularly because it involves the entire RO\textsubscript{x} cycle; however, the effects of the OH forcing are significant. Most notably, from midnight to 06:00 and again from 18:00–24:00, the measured and modeled HO\textsubscript{2} are in much better agreement. Conversely, the model still drastically under-predicts the concentrations of HO\textsubscript{2} shortly after sunrise until 09:30. This suggests that the gas-phase mechanism is lacking a HO\textsubscript{2} (or RO\textsubscript{2}) production term.

The exercise of forcing OH and HO\textsubscript{2} concentrations in the mechanism is valuable, as it can help elucidate shortcomings in the mechanism. The HO\textsubscript{2}-forcing suggests that the gas-phase mechanism – particularly under high NO\textsubscript{x} conditions – lacks either a significant HO\textsubscript{2} source that does not form OH or an HO\textsubscript{2} source and OH sink. However, a large missing gas phase OH sink appears unlikely, because the modeled predictions of OH show good agreement with measurements in the HO\textsubscript{x}-unconstrained case, and because of high uncertainty in the OH loss measurements. This is inconsistent with the relatively small differences between measured and modeled OH loss (Fig. 2). Similarly, the modeled OH in the HO\textsubscript{x}-unconstrained case is generally under-predicted, which does not lend support to the argument that the mechanism has a missing sink for OH.
3.3 \(\text{HO}_2 / \text{OH} \) vs. NO

Apart from absolute \(\text{HO}_x \) concentrations, the ratio of \(\text{HO}_2 \) to \(\text{OH} \) as a function of NO is a useful relationship to test our understanding of \(\text{HO}_x \) cycling (Fig. 4). We compare measured and modeled \(\text{HO}_2 \) ratios vs. NO on both a campaign median basis and an individual day basis. For the sake of comparison, we binned \(\text{OH} \), \(\text{HO}_2 \), and NO values based on 10 different ranges of NO concentrations. The error bars show the uncertainty of the \(\text{HO}_x \) ratio, calculated based on the uncertainty of modeled \(\text{OH} \) and \(\text{HO}_x \) concentrations.

We observe a similar relationship between the \(\text{HO}_2 / \text{OH} \) ratio and NO for both the measured and modeled values; however, there are significant differences at high NO. The modeled \(\text{HO}_2 / \text{OH} \) ratio is lower than the measured ratios by roughly a factor of 4 at NO concentrations of 100 ppb. The difference narrows to a factor of 2–3 between NO concentrations of 10–100 ppb, and is \(\leq 2 \) for NO concentrations between 1–10 ppb. The larger differences between modeled and measured \(\text{HO}_2 / \text{OH} \) ratios at high NO occurs in the morning and at night, when the model most drastically underestimates the concentrations of \(\text{HO}_2 \).

The “missing reactivity” noted previously is also evident in the comparison of the NO dependence of measured and predicted \(\text{HO}_2 / \text{OH} \) ratios. The measured \(\text{HO}_x \) ratio has a shallower slope with respect to NO than the modeled ratio does. The slope of the graphs in Fig. 4 yield the NO power dependence. We expect a dependence of between 1 to 2 (Shirley et al., 2006); however, the measured values of the \(\text{HO}_2 / \text{OH} \) vary as NO to the power of 0.36, and the modeled values vary as NO to the power of 0.64, nearly a factor of 2 increase. The lower-than-expected NO power dependence is tentatively attributed to more efficient \(\text{HO}_x \) cycling in VOC chemistry and is consistent with laboratory observations (Bloss et al., 2005a,b).

The \(\text{HO}_2 / \text{OH} \) ratio vs. NO relationship is also useful in determining the effects of using median diurnal profiles from campaign data for modeling. Legitimate concerns exist regarding conclusions drawn from the use of average or median diurnal profiles of radical sources and sinks, particularly because the characteristics of fast \(\text{HO}_x \)-\(\text{NO}_x \) chemistry may not be captured. To test our use of campaign median data and day-to-day variability thereof, we predicted \(\text{HO}_x \) concentrations for a “high \(\text{NO}_x \)” day (11 April, \(\text{NO}_{\text{max}} = 220 \) ppb) and a “low \(\text{NO}_x \)” day (18 April, \(\text{NO}_{\text{max}} = 24 \) ppb). The modeled \(\text{HO}_2 / \text{OH} \) results are also shown in Fig. 4; the individual day results – for both the measurements and the modeling – show good agreement with the campaign median results, confirming the utility of modeling on a campaign median basis.

3.4 Predicting \(\text{RO}_2 \)

Organic peroxy radicals play a major role in atmospheric processes, most notably in its reaction with NO yielding \(\text{NO}_2 \), adding to \(\text{O}_3 \) production. Unfortunately, ambient measurements of \(\text{RO}_2 \) are difficult, and unavailable from MCMA-2003. As such, we use MCMv3.1 and the different constrained cases to understand the model’s prediction of \(\text{RO}_2 \) in relation to \(\text{HO}_x \).

The predicted concentrations for \(\text{RO}_2 \) in the different modeling scenarios are shown in Fig. 5. The \(\text{HO}_x \)-constrained (not shown) and \(\text{OH} \)-constrained cases predict the same concentration of \(\text{RO}_2 \) because the effects of the \(\text{OH} \) constraint supersede any effects of the \(\text{HO}_x \) constraint. The more direct coupling between \(\text{OH} \) and \(\text{RO}_2 \) radicals is also evident when comparing the \(\text{HO}_x \)-unconstrained and constrained cases: the higher concentrations of \(\text{RO}_2 \) from 10:00–16:00 in the unconstrained case are coincident with the model’s over-prediction of \(\text{OH} \), noted previously and shown in Fig. 3.

The \(\text{RO}_2 / \text{HO}_2 \) ratios (shown in Fig. 5b vs. NO) are another metric used to understand the prediction of \(\text{RO}_2 \) as it relates to \(\text{HO}_x \). In each of the modeled scenarios in steady state, the \(\text{RO}_2 / \text{HO}_2 \) ratio is between 0.7–1, whereas in the fully constrained case, the ratios are significantly lower and drop below 0.2 when NO>7 ppb. As mentioned previously, the coupling between \(\text{OH} \) and \(\text{RO}_2 \) is more direct than that between \(\text{HO}_2 \) and \(\text{RO}_2 \). As such, the lower-than-expected ratios are a direct result of the fixed \(\text{OH} \) concentration eliminating any effects that a fixed \(\text{HO}_2 \) concentration may have. In
other words, with just a fixed HO$_2$ concentration, the profile of OH and the predicted concentrations are distorted (Fig. 3b) because of the fast HO$_2$+NO reaction (P4 in Fig. 1). However, in the HO$_X$-constrained model, the OH constraint offsets this forcing by HO$_2$ (which also yields an unbalanced model). We consider the predicted RO$_2$ concentration in the HO$_X$-constrained case as a lower limit.

3.5 Chain length

Chain length is broadly defined as the number of times that a hydroxyl radical will be regenerated via the RO$_X$ cycle (Fig. 1). The radical chain length is a parameter that captures the characteristics of the fuel (i.e., VOC) in its oxidative environment. It is an effective means to assess the relative importance of new radical production relative to radical propagation in the MCMA. Strictly speaking, chain length is only a well defined quantity if the radical chain has a single point of initiation and a single point of radical termination (i.e., a linear radical chain reaction). Atmospheric RO$_X$ cycling is inherently more complex: multiple reactions initiate the radical chain by providing sources for different radical intermediate species of the radical chain. Similarly, multiple reactions can terminate the radical chain at different RO$_X$ radical intermediate species. To our knowledge there is currently no definition of chain length available in the literature that accounts for this atmospheric complexity. We define two parameters that both characterize chain length: n(OH) and ω. n(OH) is defined from a perspective of radical initiation, whereas ω is defined from a perspective of radical termination, i.e., treats radical propagation as a first order exponential decay process. Both parameters are quantitatively comparable, and each parameter is discussed in greater detail below.

We define n(OH), as:

$$n$(OH) = γOH $\left[\frac{\Sigma OH_{new} + propagated OH}{OH_{new}}\right].$$ \hfill (1)

The γOH term is the fraction of OH entering the radical cycle:

$$\gamma$OH = $\frac{(OH \rightarrow RO_2) + (OH \rightarrow HO_2)}{total OH loss}.$$ \hfill (2)

Total OH loss includes all pathways in which OH is permanently lost or has the potential to be recycled i.e., it is equal to the sum of all propagation (P1 and P5, Fig. 1) and termination routes (T1, Fig. 1). There are numerous parameters used to calculate chain length found in the literature (e.g., Wagner et al. (2003); Seinfeld and Pandis (1998); Emmerson et al. (2007); Stroud et al. (2004); Martinez et al. (2003)). Most parameters for chain length assume that a single OH radical will cycle through at least once (i.e., n(OH)\approx1). If radical termination rates exceed propagation rates throughout the RO$_X$ cycle, then we conclude that a single radical may not complete the cycle before being removed from the system. We have therefore added the γOH term. While this scenario (i.e., n(OH)<1) is unlikely in a polluted environment such as Mexico City, it is nonetheless an important adjustment to remain consistent in our calculation of n(OH) as a quantitative measure of chain length i.e., as the amplification of radical sources.

The ΣOH_{new} term is defined in Eq. (1) of Volkamer et al. (2010) and is the sum of all new RO$_X$ radical production, weighted using conversion factors for the respective species into OH:

$$\gammaHO_2$ = $\frac{HO_2 \rightarrow OH}{total HO_2 loss},$$ \hfill (3)

$$\gamma$RO = $\frac{RO \rightarrow HO_2}{total RO loss}$, and \hfill (4)
\[
\gamma_{RO_2} = \frac{RO_2 \rightarrow RO}{\text{total RO}_2 \text{ loss}}.
\]

The \(\Sigma OH_{\text{new}}\) term is then defined as:

\[
\Sigma OH_{\text{new}} = [OH]_{\text{new}} + \gamma_{HO_2 \cdot [HO_2]_{\text{new}}}
+ \gamma_{HO_2} \cdot \gamma_{RO_2 \cdot [RO_2]_{\text{new}}}.
\]

The calculation of \(n(OH)\) is most sensitive to the definition of initiation and propagation terms, and to a lesser degree termination. This requires careful accounting of the reactive pathways. The definitions employed here are similar to those used by Wagner et al. (2003):

- new radical production (i.e., initiation) is the breakdown of a closed shell molecule into two radicals or as the conversion of O\(_3\) or NO\(_3\) into a RO\(_x\) species;
- propagation is the transformation of one RO\(_x\) species into another;
- termination (i.e., radical sinks) is the formation of a closed shell molecule from the reaction of two radicals; and,
- the mechanism contains certain species that are in fast equilibrium with radicals, such as PAN. For these compounds, a net term is calculated. The net parameter is then appropriately classified as either production or termination.

In contrast to Wagner et al. (2003), we treat absolute fluxes for fast radical-radical reactions and HONO formation. Wagner et al. (2003) defined “delayed propagation” as fast radical-radical reactions form a radical reservoir that subsequently photolyses to yield two radicals. Similarly, they define a net flux production of OH by subtracting the production of HONO (from the reaction between OH and NO) from the production of OH via HONO photolysis. This term is then lumped into \(\Sigma OH_{\text{new}}\). We have assessed the effect of including a “delayed propagation” term in the calculation of \(n(OH)\). When including the net flux from radical-radical recombination reactions and the subsequent photolytic decomposition reactions for all the appropriate species (i.e., hydroperoxide, organic peroxides, and oxygenated compounds e.g., aldehydes), we observe a modest increase in \(n(OH)\) (not shown); however, this is a function of accounting, and not a chemical manifestation of radical cycling. The differences are only observed during the day-time because OVOCs are formed from the processing of primary emissions at sunrise that make the greatest impact on the delayed propagation accounting. Wagner et al. (2003) uses a similar net flux approach in the treatment of HONO. A potential problem associated with using the net flux approach for HONO is a negative term in the summation of \(\Sigma OH_{\text{new}}\). That is, whenever HONO formation is larger than HONO photolysis, the contribution of new OH to \(\Sigma OH_{\text{new}}\) may be a negative number, which does not make physical sense (see Volkamer et al. (2010) for more discussion). Furthermore, a correlation of production and loss terms creates a convolution that should be avoided to study radical cycling chemistry. Ultimately, our determination of \(n(OH)\) as a parameter for chain length does not include “delayed propagation” or a net flux approach for HONO accounting. In our case, the processes are treated rigorously as either termination or new radical production.

Having defined the various radical reaction pathways, we use the grouped terms to calculate \(n(OH)\). Rather than calculate a single OH chain length based solely on the “long” chain \([L]: OH \rightarrow RO_2 \rightarrow RO \rightarrow HO_2\), we also consider the direct cycle between between OH and HO\(_2\) i.e., the “short” chain \((S)\). That is:

\[
\begin{align*}
n(OH) &= \gamma_{OH}[a_{OH \rightarrow HO_2} n(OH)_{S} + \beta_{OH \rightarrow RO_2} n(OH)_{L}],
\end{align*}
\]

where

\[
\begin{align*}
n(OH)_{S} &= \frac{[OH]_{\text{new}} + \gamma_{HO_2}[HO_2]_{\text{new}} + (OH \rightarrow HO_2)}{[OH]_{\text{new}} + \gamma_{HO_2}[HO_2]_{\text{new}}},
\end{align*}
\]

\[
\begin{align*}
n(OH)_{L} &= \frac{\Sigma OH_{\text{new}} + (OH \rightarrow RO_2)}{\Sigma OH_{\text{new}}},
\end{align*}
\]

\[
\begin{align*}
\alpha_{OH \rightarrow HO_2} &= \frac{OH \rightarrow HO_2}{OH \rightarrow HO_2 + OH \rightarrow RO_2},
\end{align*}
\]

\[
\begin{align*}
\beta_{OH \rightarrow RO_2} &= 1 - \alpha_{OH \rightarrow HO_2}.
\end{align*}
\]

The median values for \(n(OH)\) and \(\gamma\) for both the HO\(_x\)-constrained and HO\(_x\)-unconstrained cases are shown in Fig. 6. In the HO\(_2\)- and HO\(_x\)-constrained cases, cycling is high in the morning, with a peak of 25 around 06:30 and then decreases to 15 over the next hour. From 10:30 to 14:30, \(n(OH)\) is between 3 and 5. Conversely, there is no morning peak evident in the HO\(_x\)-unconstrained case. This difference in \(n(OH)\) is coincident with previously noted missing reactivity shortly after sunrise and during rush-hour. The \(n(OH)\) for the HO\(_x\)-unconstrained model reaches a high value of about 4 around 05:00 and is in the range of 2.5–4 throughout the day. The peak difference in chain length values occurs at 05:30, at which time the median value for the constrained case is a factor of 9 higher than the unconstrained modeling.

The conversion factors, \(\gamma_{RO_2}\), shown in the upper panel of Fig. 6, provide a means to understand cycling and chain length via an alternative approach. The conversion factors are a measure of radical propagation efficiency relative to termination. We treat radical cycling as a first order exponential decay process in which the conversion efficiencies are related to the propagation of the OH radical. We define a parameter, \(\omega\), so that:

\[
\omega = \frac{\alpha_{OH \rightarrow HO_2} \beta_{OH \rightarrow RO_2}}{\alpha_{OH \rightarrow HO_2} \beta_{OH \rightarrow RO_2} + 1 - \alpha_{OH \rightarrow HO_2}}.
\]
\[\gamma_{RO} = \frac{1}{e}, \]
and
\[\omega = -[\ln \gamma_{RO}]^{-1}, \]
where
\[\gamma_{RO} = \gamma_{OH} \times \gamma_{RO_2} \times \gamma_{RO} \times \gamma_{HO2}. \]

The median \(\omega \) value for the HO\(_x\)-constrained case is shown in Fig. 6. The chain length parameters have different perspectives with regard to radical cycling: the \(n(OH) \) focuses on propagation and initiation radical fluxes, while \(\omega \) focuses on branching ratios for individual \(RO \) species to propagate versus terminate the radical chain. The agreement between \(n(OH) \) and \(\omega \) is a measure of our understanding of radical cycling. In principle, the values for each should be the same; however, the plots for \(n(OH) \) and \(\omega \) in both the HO\(_x\)- and HO\(_2\)-constrained cases show significant differences, particularly between 04:00–10:00, and again after 14:00.

In a straight radical chain, the condition of radical concentrations in steady state imposes the constraint that radical initiation and termination fluxes are equal. In atmospheric RO\(_x\) radical cycling it follows from Eqs. (1) and (13) that in order to bring \(n(OH) \) and \(\omega \) into agreement, the HO\(_2\)-constrained model requires: 1) additional radical sources (i.e., lowers \(n(OH) \)); 2) an HO\(_2\) sink and/or lower radical conversion efficiencies (i.e., lowers \(n(OH) \) and \(\omega \)) or, 3) a combination of 1 and 2. Alternatively, a higher value of \(\omega \) could reduce the mismatch between both metrics of radical cycling in the HO\(_2\)-constrained model. However, this would require higher gamma values (fewer radical sinks) and seems somewhat unlikely for the following reasons: during the period of most significant disagreement between \(n(OH) \) and \(\omega \), the product of the \(\gamma \)-values varies between 0.6–0.7 (see upper panel of Fig. 6). In order for \(\omega \) to reach a chain length of 20, for instance, the product of the \(\gamma \)-values must approach 0.95, which is inconsistent with our current understanding of organic peroxy and hydroperoxyl radical kinetics. It should be noted that any increase in the radical conversion efficiencies of \(RO_2 \rightarrow RO \), \(RO \rightarrow HO_2 \), and \(HO_2 \rightarrow OH \) will have a non-linear effect on chain length calculation, as it will increase the contribution of new HO\(_2\) and/or new RO\(_2\) to the \(\Sigma OH_{NW} \) term, and this lowers \(n(OH) \).

Assuming the HO\(_x\) measurements are correct, we conclude that there are two possible explanations to resolve the inconsistency between \(n(OH) \) and \(\omega \): 1) an additional RO\(_x\) radical source is needed, and 2) an additional HO\(_2\) sink is required that does not form \(OH \). Note, however, that both (1) and (2) are necessary in order for the chain length results to be consistent.

We have identified the following laboratory findings that may affect chain length:

- The photolysis of nitril chloride (ClNO\(_2\)) as a source for RO\(_2\) at high VOC concentrations (Roberts et al., 2008; Thornton et al., 2010). As discussed in Volkamer et al. (2010), this RO\(_2\) source is likely operative and relevant in Mexico City.

- The formation of \(OH \) and HONO from the reaction between NO\(_2^*\) and water vapor as reported by Shuping et al. (2008). We introduced a series of reactions into the MCM to account for this reaction and no appreciable difference was observed in the chain length parameters.

- The formation of HNO\(_3\) via reaction between HO\(_2\) and NO in the presence of water vapor as reported by Butkovskaya et al. (2005) and Butkovskaya et al. (2007). The mechanism is consistent with the second explanation listed above; however, only introducing a HO\(_2\) sink would increase missing reactivity in the model.

- The formation of \(OH \) from the reaction between organic peroxy radicals and HO\(_2\) as reported by Hasson et al. (2004). We note that this mechanism is most significant at low levels of NO\(_x\).

- Finally, the formation of \(OH \) from organic peroxy radicals as reported by Hatakeyama et al. (1986) and Peeters et al. (2009).

The first three (3) points would decrease chain length and the last two (2) points would increase chain length.
Ozone formation is essentially a competition process between VOC and NOx for OH (Seinfeld and Pandis, 1998). Net instantaneous ozone production, \(P(O_3) \), is a measure of ozone formation as a result of NO oxidation via reaction with \(\text{HO}_2 \) or RO2, yielding \(\text{NO}_2 \) and OH or RO, respectively. The production rate also accounts for radical loss channels forming HNO3 and RNO3. The net instantaneous \(O_3 \) production is calculated as:

\[
P(O_3) = k_{\text{HO}_2+\text{NO}}[\text{HO}_2][\text{NO}]+\sum k_i[\text{RO}_2][\text{NO}]
- P(\text{HNO}_3) - P(\text{RNO}_3)
\]

The median \(P(O_3) \) diurnal profiles for the individual days and the median model in the \(\text{HO}_x \)-constrained and \(\text{HO}_x \)-unconstrained scenarios are shown in Fig. 7. The median profile of \(P(O_3) \) as calculated using only measured \(\text{HO}_2 \) is also shown.

The median-model \(\text{HO}_x \)-constrained, median of individual day \(\text{HO}_x \)-constrained modeling, and \(\text{HO}_2 \)-measured cases exhibit similar profiles for \(P(O_3) \), with a peak at 08:00 of 115, 107, and 65 ppb hr\(^{-1}\), respectively. The median-model \(\text{HO}_x \)-unconstrained and individual day \(\text{HO}_x \)-unconstrained modeling show similar profiles, but are very different from the other 3 cases shown. The timing of the peak ozone production is shifted by about 2 h, and shows a much less pronounced peak of 45 ppb hr\(^{-1}\). We consider the profiles for both the \(\text{HO}_x \)-constrained cases as lower limits because of a lower-than-expected \(\text{RO}_2/\text{HO}_2 \) ratio, as shown in Fig. 5b. If a \(\text{RO}_2/\text{HO}_2 \) ratio of unity is assumed, the magnitude of \(P(O_3) \) increases to well above 100 ppb hr\(^{-1}\).

The differences observed in the \(P(O_3) \) profiles, most notably between 06:00 and 10:00, are coincident with the aforementioned missing reactivity. The under-estimation of \(\text{HO}_x \) radicals in the unconstrained code manifests itself in both the magnitude and timing of peak ozone production. Despite the fact that the various profiles come into good agreement by 10:00, the measurements indicated that the bulk of \(\text{NO} \rightarrow \text{NO}_2 \) conversions take place before that time. The upper panel of Fig. 7 quantifies the effects of the missing reactivity on the oxidative capacity of the Mexico City atmosphere. The \(\text{HO}_x \)-constrained case predicts a minimum of 75% greater cumulative ozone production than the unconstrained case throughout the day, with a factor of 5 difference in the early morning at the onset of photochemical processing.

4 Comparison to other studies

4.1 Radical budgets

The MCMv3.1 has only recently been used in similar detail to quantify radical fluxes for initiation, propagation, and termination. In Part 1, Volkamer et al. (2010) compare new radical production rates in the MCMA to other airmasses, noting both the homogeneity of radical sources in the MCMA and the higher production rates. The radical fluxes for cycling routes that we report for both the \(\text{HO}_x \)-unconstrained and \(\text{HO}_x \)-constrained cases are considerably higher than those reported elsewhere (Emmerson et al., 2007, 2005; Platt et al., 2002). Apart from the \(\text{RO} \rightarrow \text{HO}_2 \) route, the radical flux from one \(\text{RO} \) radical to another is roughly 1.5–3 times larger in the MCMA compared to the cleaner sub-urban airmass observed during the TORCH campaign, and the semi-polluted atmosphere in Birmingham during the PUMA campaign. The radical flux of propagation pathways is higher for the MCMA due to higher \(\text{NO}_x \) concentrations and VOC concentrations, and higher rates of radical initiation. The \(\text{RO} \rightarrow \text{HO}_2 \) flux in the MCMA is comparable to the value reported for Birmingham (2 reasons: 1) at the high concentrations of \(\text{NO} \) observed during MCMA-2003, the conversion efficiency for the \(\text{RO} \rightarrow \text{RO} \) route is lower because of the formation of organic nitrates (RNO3). This yields fewer RO radicals, meaning a lower flux into \(\text{HO}_2 \). 2) We observe a much higher rate of thermal decomposition of RO radicals back into \(\text{RO} \) radicals. A direct comparison with the BERLIOZ campaign is difficult because the radical production rates are distinguished only by production and destruction.

4.2 Missing \(\text{HO}_x \) radicals

The under-prediction of OH and \(\text{HO}_2 \) in our \(\text{HO}_x \)-unconstrained model has also been observed in other
environments, including atmospheric chamber studies (Bloss et al., 2005a,b), the upper troposphere (Folkins et al., 1997; Tan et al., 2001; Faloona et al., 2000), and other urban areas (Martinez et al., 2003; Ren et al., 2003). Shirley et al. (2006) employ the RACM mechanism to study the MCMA (2003 campaign) and do not observe the same missing radicals at high NOx concentrations, and report that the measured-to-modeled ratios during rush hour for HO2 is 1.5. Dunstan et al. (2009) use the same RACM mechanism, with different constraints, to study the MCMA (2006 campaign) and note an under-prediction of HO2 in the morning (08:00–11:30), peaking at a factor of about 5 at 10:00. They offer three potential explanations, including (i) close emission sources of NOx and VOC leading to inhomogeneous air masses, (ii) a missing radical source, and (iii) an over-estimated HO2 to OH radical propagation route in the code due to an unknown chemical process that converts OH into peroxy radicals. Similarly, Ren et al. (2003) note an increasing measured-to-modeled ratio with increasing NO. At NO concentrations greater than 10 ppb, RACM under-predicts HO2 by a factor of 2–20, similar to what we observe in the MCMA. To explain the difference, they suggest unknown HOx sources that increase with NOx or shortcoming in HOx-NOx chemistry. Based on our analysis using the detailed McMv3.1 and the chain length cycling parameters, n(OH) and ω, we conclude that there is a significant missing source for HO2 and smaller one for OH. Because the predicted OH concentrations are generally very good, the introduction of a missing source for HO2 must be accompanied by a pathway that does not form OH via reaction with NO (i.e., a sink for HO2 radicals) or be accompanied by an efficient OH loss mechanism consistent with the discussion in Sect. 3.1.

The very high NOx concentrations observed during MCMA-2003 makes our study unique amongst those employing the MCM and extends the NOx range over which MCM has been employed in field studies. The median peak NOx concentration employed here is about 130 ppb, with some days as high as 250 ppb. Our results demonstrate the incomplete understanding of HOx chemical cycling at high NOx beyond experimental doubt. In other studies employing the MCM, the peak NOx concentrations are roughly 30 ppb for PUMA-summer, 30 ppb for BERLIOZ and 25 ppb for the TORCH campaign. High concentrations of NOx were observed during the winter months of the PUMA campaign (140 ppb), however, HO2 measurements were largely unavailable to compare with predicted values. As such, the noted missing radicals, while difficult to compare directly with other field campaign analyses employing the MCM, presents confirmation at previously unstudied high NOx conditions. The key message from our work is that comparing radical concentrations is misleading when comparing models because it is not reflective of the radical fluxes and reactivities. This is overcome by using the two chain length parameters employed herewithin.

4.3 Defining a chain length parameter

The chain length parameter $n(OH)$ is widely used as a quantitative measure of radical cycling, but the equations used to calculate the parameter vary significantly. We evaluate several of these equations here. Seinfeld and Pandis (1998) calculate it as:

$$n(OH)_{\text{Seinfeld/Pandis}} = \frac{\text{new OH} + \text{old OH}}{\text{new OH}},$$ \hspace{1cm} (16)

where “old” OH is defined as recycled or propagated OH, a similar equation to the one employed here. On the other hand, in the TOPSE campaign, Stroud et al. (2004) calculate chain length as:

$$n(OH)_{\text{TOPSE}} = \frac{P(OH)_{\text{cycling}}}{L(RO_x)},$$ \hspace{1cm} (17)

where $P(OH)_{\text{cycling}}$ is OH radical production from propagation routes (i.e., $HO_2 \rightarrow OH$) only and $L(RO_x)$ is the sum of all radical losses. In a slightly different approach, Emmerson et al. (2007) calculate chain length as:

$$n(OH)_{\text{TORCH}} = \frac{P(OH)_{H O_2 \rightarrow OH}}{\text{new OH}},$$ \hspace{1cm} (18)

where the OH production term is solely defined by the HO2 propagation route and new OH is the same as I1 in Fig. 1.

As part of the Southern Oxidants Study (SOS), Martinez et al. (2003) use the following equation:

$$n(OH)_{\text{SOS}} = \frac{[OH] \cdot OH_{\text{reactivity}} - L(HO_x)}{L(HO_x)},$$ \hspace{1cm} (19)

The range of equations for OH radical chain length make comparisons between airmasses of different VOC and NOx loadings extremely difficult. For instance, at peak NOx concentrations around 07:00 we calculate a chain length using the equations defined above and get a range of 14–45. By 12:00, they come into better agreement, but the range of values is still 2–6. There is a need for a formalized equation to match the definition of chain length for sufficiently conclusive comparisons between airmasses.

In the case of the equation provided by Seinfeld and Pandis (1998), they do not account for the sink of OH radicals, as defined by us as γ_{OH2} in Sect. 3.5. Similarly, in applying their equation, we must assume that “new OH” is equivalent to ΣOH_{new}. In the TOPSE and SOS calculation of chain length, the role of new radical formation is folded entirely into radical propagation and termination. Ultimately, both of these assumptions over-simplify the conversion efficiency between RO2 and HO2 to OH. The TORCH calculation over-simplifies radical initiation. As mentioned previously, when accounting for “new OH”, the sum of new radicals from other sources should be counted. This is particularly important because the sum of new ROx radical production is considerably larger than new OH radical production (see Volkamer et al., 2010).
Each of the equations for chain length provides a quantitative determination of radical propagation relative to initiation and/or termination, yet they lack consistency. With MCM we can account for each of the radical initiation, propagation, and termination pathways (Fig. 1) and we make no assumptions about the VOC or NO\textsubscript{x} environment. Our explicit calculation of OH chain length is a normalized calculation that is linked to production rates and is a quantitative determination of the amplification of radical sources. We consider it a valuable tool in assessing the oxidative capacity of a given airmass and provides the quantitative rigor necessary to compare it to other airmasses.

4.4 Ozone production

Our comparison of ozone production to other studies focuses on magnitude and timing of ozone production. In terms of magnitude, we report similar values as those reported by Shirley et al. (2006) using RACM and by Lei et al. (2007) in a 3-D chemical transport study. Compared to other cities, we report much higher values of ozone production (Kleinman et al., 2005). The study by Ren et al. (2003), with underpredicted \(\text{HO}_2 \) concentrations in the model, observe a similar difference between \(P(\text{O}_3) \) from measurements compared to the model as shown here in Fig. 7.

In terms of the timing, the measurements of OH, \(\text{HO}_2 \), NO, and \(\text{NO}_2 \) in the MCMA indicate a much different profile for ozone production than the model suggests. As shown in Fig. 7, the model clearly lacks the sharp peak around 08:00. Instead we observe a broad peak between 10:00–11:00, some 2 h after measurements suggest peak ozone production. Similarly, in the results presented by Shirley et al. (2006), peak ozone production is around 09:30, nearly 1.5 h later than expected. In the case presented by Lei et al. (2007) using a chemical transport model, they observe peak ozone production around 12:30 (W. Lei, personal communication, 2007) more than 4 h later than expected by observations. In the PMTACS-NY study, measurements indicate peak ozone production around 09:00. In addition to a consistent under-prediction of ozone production by the model compared to measurements, models do not predict a distinct peak in ozone production in the early morning.

5 Conclusions

High radical recycling fluxes are largely responsible for the high photochemical activity in the MCMA compared to other urban environments. In this study we have provided a unique perspective on radical recycling as the quantitative amplification of radical initiation fluxes (Volkamer et al., 2010). We use MCMv3.1, in combination with measurements of OH, \(\text{HO}_2 \) and OH loss rate (Shirley et al., 2006) to identify shortcomings in our understanding of radical cycling under conditions of high VOC and NO\textsubscript{x} loadings characteristic of the MCMA, and other polluted urban environments.

- We find excellent agreement between a lower-limit measured concentration and the modeled concentrations of \(\text{OH} \) using MCMv3.1, with a notable under-prediction around 06:00–07:00. We observe a significant under-prediction of \(\text{HO}_2 \). These missing radicals are most notable when NO\textsubscript{x} concentrations are high (25–130 ppb). Despite a good correlation using a linear regression analysis for measured and modeled \(\text{HO}_x \), we caution against this metric as it is weighted towards times when \(\text{HO}_x \) values are high and NO\textsubscript{x} concentrations are low. The metric may simulate apparently good agreement between the model and measurements and does not reflect photochemical activity (i.e., radical fluxes). Our analysis extends the range over which MCMv3.1 has been tested under real-world conditions towards higher NO\textsubscript{x}.

- A significant imbalance is identified in the measurements of \(\text{OH}, \text{HO}_2 \) and \(\text{OH} \) loss rates (Shirley et al. (2006); see Supplemental Information). Notably, \(\text{HO}_2 \) measurements are characterized by a high signal-to-noise ratio and are typically regarded as the most reliable of the \(\text{HO}_x \) related measurements (W. H. Brune, personal communication, 2003). Due to the measurement imbalance we can not simultaneously constrain the model for \(\text{OH} \) and \(\text{HO}_2 \) measurements, and balance \(\text{OH} \) production and loss. This limits our ability to test predictions of \(\text{OH} \) and \(\text{HO}_2 \). However, it does not limit our assessment of chain length from any balanced model (either not constrained by \(\text{HO}_x \) observations, or constrained by \(\text{OH} \) or \(\text{HO}_2 \)). We define chain length as the number of times that a hydroxyl radical will be regenerated via the RO\textsubscript{x} cycle.

- Atmospheric RO\textsubscript{x} cycling is inherently complex and calculations of chain length suffer from multiple points of radical initiation and termination. We find that the determination of chain length using equations found in the literature vary by a factor of 3 if applied to the MCMA-2003 data set. Any exact determination of chain length requires a single point of initiation and/or termination. We calculate two chain length parameters: The first parameter, \(n(\text{OH}) \), calculates chain length from the perspective of radical initiation (see Eq. 1). The production of RO\textsubscript{x} radicals is expressed in terms of \(\text{OH} \)-equivalents i.e., the multiple points of initiation are compressed into a single parameter \(\Sigma \text{OH}_{\text{new}} \). The \(\omega \) parameter calculates chain length based on consideration of radical termination (see Eq. 11). The \(\omega \) parameter accounts for the multiple points of termination and does not depend on radical initiation. To our knowledge these parameters represent the first systematic attempt to capture the complexity of the atmospheric RO\textsubscript{x} radical cycle and...
may help normalize future attempts to compare chain lengths between air masses.

- Both chain length parameters give comparable numbers for the HO\(_x\) unconstrained model case (1<\(n(\text{OH})\) ~\(\omega<4\)). However, we find \(n(\text{OH})>20\) during morning hours if the model is constrained for HO\(_2\) observations. As expected, \(\omega\) remains unaffected by the HO\(_2\) constraint. The high values of \(n(\text{OH})\) are not compatible with our understanding of radical termination. If the HO\(_2\) observations are correct, there is no single process that can resolve the mismatch between \(n(\text{OH})\) and \(\omega\) in the HO\(_2\)-constrained scenario. An additional RO\(_x\) radical source in combination with an additional HO\(_2\) sink that does not form OH directly may resolve this conundrum. Note that any combination of processes would bypass the OH radical as an intermediate.

- The model underpredicts the observations of OH and HO\(_2\) during morning hours. Our analysis demonstrates that at very high NO\(_x\) (100 ppb) our understanding of the sources and fate of RO\(_x\) radicals is incomplete. We conclude that in order to reconcile models with observations, a significant portion of the RO\(_x\) radical fluxes needs to follow essentially different reaction routes that may not involve the OH radical as an intermediate species. A significant RO\(_2\) source could be tied to chlorine radicals in the MCMA (see discussion in Volkamer et al., 2010), though it appears that most of the needed RO\(_2\) source is currently still unaccounted for.

- Control strategies for effective air quality management rely on the predictive capacity of models. The shortcomings in our ability to predict the RO\(_x\) radical cycle with confidence have implications for ozone formation and the formation of SOA. For instance, the ozone production rates reported in this study are much higher than those reported elsewhere. Based on our current understanding that HO\(_2\) radicals propagate to convert NO into NO\(_2\) as part of the ozone production process (at high NO), we find that the model underpredicts the accumulated amount of ozone by at least a factor of 2 compared to the HO\(_2\)-constrained model. The uncertainty due to missing radicals in models may appear reduced in urban airshed models that employ lumped chemical codes which are optimized to a specific target question (e.g., predicting ozone). However, the uncertainty inherent to these chemistry modules proves difficult to parameterize over a wide range of VOC and NO\(_x\) conditions (Carter, 2004). For conditions typical of the VOC limited chemistry relevant in the MCMA the uncertainty in predicting ozone ranges between 10-40% (or several 10 ppb at peak ozone concentrations). This uncertainty is comparable to that from uncertain emission inventories and meteorology (Lei et al., 2007). Furthermore, the underestimation of oxidant fields poses an additional modeling challenge with predicting the rapid formation of large amounts of SOA observed in urban air (de Gouw et al., 2005; Volkamer et al., 2006; Kleinman et al., 2008).

- There is a need for further laboratory research and field work to improve our understanding of RO\(_x\) radical initiation and cycling. In particular, RO\(_2\) radical concentrations are poorly constrained by observations. Our understanding would benefit from data sets that co-locate multiple instruments capable of measuring HO\(_x\), RO\(_2\), and first order OH loss at high NO, NO with high sensitivity and time resolution (i.e., 100 ppt detection limit with a second time resolution), an extensive library of time-resolved VOC concentrations, and heterogeneous radical processes. To our knowledge, no field campaign has captured all of these measurements, and some of these measurements will require instrument development.

Supplementary material related to this article is available online at: http://www.atmos-chem-phys.net/10/6993/2010/acp-10-6993-2010-supplement.pdf.

Acknowledgements. The authors would like to thank the entire MCMA-2003 team. In particular, we would like to thank W.H. Brune for detailed measurements of OH, HO\(_2\) and OH-reactivity and helpful discussion related to these measurements. This work was supported by the National Science Foundation (ATM-0528227), the Department of Energy (DE-FG02-0563980), the Alliance for Global Sustainability (AGS), and the Comision Ambiental Metropolitana (CAM) of Mexico City. R. Volkamer acknowledges consecutive fellowships by the Henry & Camille Dreyfus Foundation and Alexander von Humboldt Foundation and funding support from a CAREER award by the National Science Foundation, award ATM-0847793. P. Sheehy is grateful to J.I. Steinfield.

Edited by: C. E. Kolb

References

Martinez, M., Harder, H., Brune, W., Di Carlo, P., Williams, E., Hereid, D., Jobson, T., Kuster, W., Roberts, J., Trainer, D., and Geyer, A.: The behavior of the hydroxyl and hydroperoxyl rad-

