Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 10, 4775-4793, 2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
26 May 2010
Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation
D. V. Spracklen1, K. S. Carslaw1, J. Merikanto1, G. W. Mann1, C. L. Reddington1, S. Pickering1, J. A. Ogren2, E. Andrews2, U. Baltensperger3, E. Weingartner3, M. Boy4, M. Kulmala4, L. Laakso4, H. Lihavainen5, N. Kivekäs5, M. Komppula5,20, N. Mihalopoulos6, G. Kouvarakis6, S. G. Jennings7, C. O'Dowd7, W. Birmili8, A. Wiedensohler8, R. Weller9, J. Gras10, P. Laj11, K. Sellegri12, B. Bonn13, R. Krejci14, A. Laaksonen5,15, A. Hamed15, A. Minikin16, R. M. Harrison17, R. Talbot18, and J. Sun19 1Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, LS2 9JT, UK
2NOAA/ESRL Global Monitoring Division, 325 Broadway R/GMD1, Boulder, Co 80305, USA
3Paul Scherrer Institut, Laboratory of Atmospheric Chemistry, 5232 Villigen, Switzerland
4Department of Physics, University of Helsinki, 00014 Helsinki, Finland
5Climate Change, Finnish Meteorological Institute, P.O. Box 503, 00101, Helsinki, Finland
6Department of Chemistry, University of Crete, University campus, P.O. Box 2208, 71003, Voutes, Heraklion, Crete, Greece
7Department of Physics, National University of Ireland, Galway, Ireland
8Leibniz Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, Germany
9Alfred Wegener Institute, Am Handelshafen 12, 27570 Bremerhaven, Germany
10CSIRO Marine and Atmospheric Research, Ctr Australian Weather and Climate Res, Aspendale, Victoria, Australia
11Laboratoire de Glaciologie et Géophysique de l'Environnement CNRS/Université Grenoble 1, Grenoble, France
12Laboratoire de Météorologie Physique, Université Clermont-Ferrand/ CNRS, Clermont-Ferrand, France
13Institute for Atmospheric and Environmental Sciences, J. W. Goethe University, Frankfurt/Main, Germany
14Department of Applied Environmental Science (ITM), Stockholm University, 106 91 Stockholm, Sweeden
15Department of Physics and Mathematics, University of Eastern Finland, (Kuopio campus), P.O. Box 70211 Kuopio, Finland
16Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut f�r Physik der Atmosphäre, Oberpfaffenhofen, Germany
17National Centre for Atmospheric Science, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
18Climate Change Research Center, University of New Hampshire, Durham, NH 03824 USA
19Key Laboratory for Atmospheric Chemistry of CMA, Center for Atmosphere Watch and Services, Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
20Kuopio Unit, Finnish Meteorological Institute, Kuopio, Finland
Abstract. We synthesised observations of total particle number (CN) concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300–2000 cm−3 in the marine boundary layer and free troposphere (FT) and 1000–10 000 cm−3 in the continental boundary layer (BL). Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2–10 greater than wintertime concentrations. We used these CN observations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R2=0.46) but fail to explain the observed seasonal cycle (R2=0.1). The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=−88%) unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=−25%). Simulated CN concentrations in the continental BL were also biased low (NMB=−74%) unless the number emission of anthropogenic primary particles was increased or a mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J, proportional to gas-phase sulfuric acid concentration to the power one) or kinetic-type mechanism (J proportional to sulfuric acid to the power two) with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R2=0.3) than by increasing the number emission from primary anthropogenic sources (R2=0.18). The nucleation constants that resulted in best overall match between model and observed CN concentrations were consistent with values derived in previous studies from detailed case studies at individual sites. In our model, kinetic and activation-type nucleation parameterizations gave similar agreement with observed monthly mean CN concentrations.

Citation: Spracklen, D. V., Carslaw, K. S., Merikanto, J., Mann, G. W., Reddington, C. L., Pickering, S., Ogren, J. A., Andrews, E., Baltensperger, U., Weingartner, E., Boy, M., Kulmala, M., Laakso, L., Lihavainen, H., Kivekäs, N., Komppula, M., Mihalopoulos, N., Kouvarakis, G., Jennings, S. G., O'Dowd, C., Birmili, W., Wiedensohler, A., Weller, R., Gras, J., Laj, P., Sellegri, K., Bonn, B., Krejci, R., Laaksonen, A., Hamed, A., Minikin, A., Harrison, R. M., Talbot, R., and Sun, J.: Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation, Atmos. Chem. Phys., 10, 4775-4793,, 2010.
Publications Copernicus