Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 10, 4403-4422, 2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
12 May 2010
Observed and simulated global distribution and budget of atmospheric C2-C5 alkanes
A. Pozzer1,2, J. Pollmann2, D. Taraborrelli2, P. Jöckel2,*, D. Helmig3, P. Tans4, J. Hueber3, and J. Lelieveld1,2 1The Cyprus Institute, Energy, Environment and Water Research Center, P.O. Box 27456, 1645 Nicosia, Cyprus
2Air Chemistry Department, Max-Planck Institute of Chemistry, P.O. Box 3060, 55020 Mainz, Germany
3Institute of Arctic and Alpine Research (INSTAAR), University of Colorado, UCB 450, CO 80309, USA
4NOAA/ESRL, 325 Broadway, Boulder, CO 80303, USA
*now at: DLR, Institut fuer Physik der Atmosphaere, Oberpfaffenhofen, 82234 Wessling, Germany
Abstract. The primary sources and atmospheric chemistry of C2-C5 alkanes were incorporated into the atmospheric chemistry general circulation model EMAC. Model output is compared with new observations from the NOAA/ESRL GMD Cooperative Air Sampling Network. Based on the global coverage of the data, two different anthropogenic emission datasets for C4-C5 alkanes, widely used in the modelling community, are evaluated. We show that the model reproduces the main atmospheric features of the C2-C5 alkanes (e.g., seasonality). While the simulated values for ethane and propane are within a 20% range of the measurements, larger deviations are found for the other tracers. According to the analysis, an oceanic source of butanes and pentanes larger than the current estimates would be necessary to match the observations at some coastal stations. Finally the effect of C2-C5 alkanes on the concentration of acetone and acetaldehyde are assessed. Their chemical sources are largely controlled by the reaction with OH, while the reactions with NO3 and Cl contribute only to a little extent. The total amount of acetone produced by propane, i-butane and i-pentane oxidation is 11.2 Tg/yr, 4.3 Tg/yr, and 5.8 Tg/yr, respectively. Moreover, 18.1, 3.1, 3.4, 1.4 and 4.8 Tg/yr of acetaldehyde are formed by the oxidation of ethane, propane, n-butane, n-pentane and i-pentane, respectively.

Citation: Pozzer, A., Pollmann, J., Taraborrelli, D., Jöckel, P., Helmig, D., Tans, P., Hueber, J., and Lelieveld, J.: Observed and simulated global distribution and budget of atmospheric C2-C5 alkanes, Atmos. Chem. Phys., 10, 4403-4422,, 2010.
Publications Copernicus