Articles | Volume 10, issue 4
https://doi.org/10.5194/acp-10-1953-2010
https://doi.org/10.5194/acp-10-1953-2010
19 Feb 2010
 | 19 Feb 2010

Saharan dust infrared optical depth and altitude retrieved from AIRS: a focus over North Atlantic – comparison to MODIS and CALIPSO

S. Peyridieu, A. Chédin, D. Tanré, V. Capelle, C. Pierangelo, N. Lamquin, and R. Armante

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Monitoring multiple satellite aerosol optical depth (AOD) products within the Copernicus Atmosphere Monitoring Service (CAMS) data assimilation system
Sebastien Garrigues, Samuel Remy​​​​​​​, Julien Chimot, Melanie Ades, Antje Inness, Johannes Flemming, Zak Kipling, Istvan Laszlo, Angela Benedetti, Roberto Ribas, Soheila Jafariserajehlou, Bertrand Fougnie, Shobha Kondragunta, Richard Engelen, Vincent-Henri Peuch, Mark Parrington, Nicolas Bousserez, Margarita Vazquez Navarro, and Anna Agusti-Panareda
Atmos. Chem. Phys., 22, 14657–14692, https://doi.org/10.5194/acp-22-14657-2022,https://doi.org/10.5194/acp-22-14657-2022, 2022
Short summary
Comparisons between the distributions of dust and combustion aerosols in MERRA-2, FLEXPART, and CALIPSO and implications for deposition freezing over wintertime Siberia
Lauren M. Zamora, Ralph A. Kahn, Nikolaos Evangeliou, Christine D. Groot Zwaaftink, and Klaus B. Huebert
Atmos. Chem. Phys., 22, 12269–12285, https://doi.org/10.5194/acp-22-12269-2022,https://doi.org/10.5194/acp-22-12269-2022, 2022
Short summary
Atmospheric oxidation mechanism and kinetics of indole initiated by OH and Cl: a computational study
Jingwen Xue, Fangfang Ma, Jonas Elm, Jingwen Chen, and Hong-Bin Xie
Atmos. Chem. Phys., 22, 11543–11555, https://doi.org/10.5194/acp-22-11543-2022,https://doi.org/10.5194/acp-22-11543-2022, 2022
Short summary
Identifying the spatiotemporal variations in ozone formation regimes across China from 2005 to 2019 based on polynomial simulation and causality analysis
Ruiyuan Li, Miaoqing Xu, Manchun Li, Ziyue Chen, Na Zhao, Bingbo Gao, and Qi Yao
Atmos. Chem. Phys., 21, 15631–15646, https://doi.org/10.5194/acp-21-15631-2021,https://doi.org/10.5194/acp-21-15631-2021, 2021
Short summary
Aerosol vertical distribution and interactions with land/sea breezes over the eastern coast of the Red Sea from lidar data and high-resolution WRF-Chem simulations
Sagar P. Parajuli, Georgiy L. Stenchikov, Alexander Ukhov, Illia Shevchenko, Oleg Dubovik, and Anton Lopatin
Atmos. Chem. Phys., 20, 16089–16116, https://doi.org/10.5194/acp-20-16089-2020,https://doi.org/10.5194/acp-20-16089-2020, 2020
Short summary

Cited articles

Alpert, P., Kishcha, P., Shtivelman, A., Krichak, S., and Joseph, J.: Vertical distribution of Saharan dust based on 2.5-year model predictions, Atmos. Res., 70, 109–130, https://doi.org/{10.1016/j.atmosres.2003.11.001}, 2004.
Carlson, T.: Atmospheric turbidity in Saharan dust outbreaks as determined by analyses of satellite brightness data, Mon. Weather Rev., 107, 322–335, 1979.
Ch{é}din, A., Scott, N. A., Wahiche, C., and Moulinier, P.: The Improved Initialization Inversion Method: A high resolution physical method for temperature retrievals from satellites of the TIROS-N series, J. Clim. Appl. Meteorol., 24, 128–143, 1985.
Chevallier, F., Cheruy, F., Scott, N. A., and Ch{é}din, A.: A neural network approach for a fast and accurate computation of a longwave radiative budget, J. Appl. Meteorol., 37, 1385–1397, 1998.
Chiapello, I., Bergametti, G., Gomes, L., Chatenet, B., Dulac, F., Pimenta, J., and Santos Soares, E.: An additional low layer transport of Sahelian and Saharan dust over the North-Eastern Tropical Atlantic, Geophys. Res. Lett., 22, 3191–3194, https://doi.org/{0094-8534/95/95GL-0.3313}, 1995.
Download
Altmetrics
Final-revised paper
Preprint