Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 10, 10621-10638, 2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
11 Nov 2010
Peroxy radical partitioning during the AMMA radical intercomparison exercise
M. D. Andrés-Hernández1, D. Stone2,3, D. M. Brookes4, R. Commane2,*, C. E. Reeves5, H. Huntrieser6, D. E. Heard2,7, P. S. Monks4, J. P. Burrows1, H. Schlager6, D. Kartal1, M. J. Evans3, C. F. A. Floquet2, T. Ingham2,7, J. Methven8, and A. E. Parker4 1Institute of Environmental Physics, University of Bremen, Bremen, Germany
2School of Chemistry, University of Leeds, Leeds, UK
3School of Earth and Environment, University of Leeds, Leeds, UK
4Department of Chemistry, University of Leicester, Leicester, UK
5School of Environmental Sciences, University of East Anglia, Norwich, UK
6Institute of Atmospheric Physics, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
7National Centre for Atmospheric Science, University of Leeds, Leeds, UK
8Department of Meteorology, University of Reading, Reading, UK
*now at: School of Engineering and Applied Science, Harvard University, Cambridge, USA
Abstract. Peroxy radicals were measured onboard two scientific aircrafts during the AMMA (African Monsoon Multidisciplinary Analysis) campaign in summer 2006. This paper reports results from the flight on 16 August 2006 during which measurements of HO2 by laser induced fluorescence spectroscopy at low pressure (LIF-FAGE) and total peroxy radicals (RO2* = HO2+ΣRO2, R = organic chain) by two similar instruments based on the peroxy radical chemical amplification (PeRCA) technique were subject of a blind intercomparison. The German DLR-Falcon and the British FAAM-BAe-146 flew wing tip to wing tip for about 30 min making concurrent measurements on 2 horizontal level runs at 697 and 485 hPa over the same geographical area in Burkina Faso. A full set of supporting measurements comprising photolysis frequencies, and relevant trace gases like CO, NO, NO2, NOy, O3 and a wider range of VOCs were collected simultaneously.

Results are discussed on the basis of the characteristics and limitations of the different instruments used. Generally, no data bias are identified and the RO2* data available agree quite reasonably within the instrumental errors. The [RO2*]/[HO2] ratios, which vary between 1:1 and 3:1, as well as the peroxy radical variability, concur with variations in photolysis rates and in other potential radical precursors. Model results provide additional information about dominant radical formation and loss processes.

Citation: Andrés-Hernández, M. D., Stone, D., Brookes, D. M., Commane, R., Reeves, C. E., Huntrieser, H., Heard, D. E., Monks, P. S., Burrows, J. P., Schlager, H., Kartal, D., Evans, M. J., Floquet, C. F. A., Ingham, T., Methven, J., and Parker, A. E.: Peroxy radical partitioning during the AMMA radical intercomparison exercise, Atmos. Chem. Phys., 10, 10621-10638,, 2010.
Publications Copernicus