Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 10, issue 21
Atmos. Chem. Phys., 10, 10503-10520, 2010
https://doi.org/10.5194/acp-10-10503-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 10, 10503-10520, 2010
https://doi.org/10.5194/acp-10-10503-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 10 Nov 2010

Research article | 10 Nov 2010

Evaluation of various observing systems for the global monitoring of CO2 surface fluxes

K. Hungershoefer1,*, F.-M. Breon1, P. Peylin1,2, F. Chevallier1, P. Rayner1,**, A. Klonecki3, S. Houweling4,5, and J. Marshall6 K. Hungershoefer et al.
  • 1Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Unité Mixte de Recherche, UMR1572, CNRS-CEA-UVSQ, 91191 Gif-sur-Yvette, France
  • 2Laboratoire Biogéochimie et Ecologie des Milieux Continentaux, CNRS-UPMC-INRA, Paris, France
  • 3Noveltis, 31520 Ramonville Saint Agne, France
  • 4SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands
  • 5Institute for Marine and Atmospheric Reasearch Utrecht, Princetonplein 5, 3584 CC Utrecht, The Netherlands
  • 6Max Planck Institute for Biogeochemistry, Hans-Knoell Strasse 10, 07745 Jena, Germany
  • *now at: Deutscher Wetterdienst, Department Climate Monitoring, 63067 Offenbach, Germany
  • **now at: University of Melbourne, School of Earth Sciences, Melbourne, Australia

Abstract. In the context of rising greenhouse gas concentrations, and the potential feedbacks between climate and the carbon cycle, there is an urgent need to monitor the exchanges of carbon between the atmosphere and both the ocean and the land surfaces. In the so-called top-down approach, the surface fluxes of CO2 are inverted from the observed spatial and temporal concentration gradients. The concentrations of CO2 are measured in-situ at a number of surface stations unevenly distributed over the Earth while several satellite missions may be used to provide a dense and better-distributed set of observations to complement this network. In this paper, we compare the ability of different CO2 concentration observing systems to constrain surface fluxes. The various systems are based on realistic scenarios of sampling and precision for satellite and in-situ measurements.
It is shown that satellite measurements based on the differential absorption technique (such as those of SCIAMACHY, GOSAT or OCO) provide more information than the thermal infrared observations (such as those of AIRS or IASI). The OCO observations will provide significantly better information than those of GOSAT. A CO2 monitoring mission based on an active (lidar) technique could potentially provide an even better constraint. This constraint can also be realized with the very dense surface network that could be built with the same funding as that of the active satellite mission. Despite the large uncertainty reductions on the surface fluxes that may be expected from these various observing systems, these reductions are still insufficient to reach the highly demanding requirements for the monitoring of anthropogenic emissions of CO2 or the oceanic fluxes at a spatial scale smaller than that of oceanic basins. The scientific objective of these observing system should therefore focus on the fluxes linked to vegetation and land ecosystem dynamics.

Publications Copernicus
Download
Citation
Share